Statement Of Problem: The use of antifungals has been suggested during the treatment of denture stomatitis associated with Candida albicans biofilms. However, how time, material surface, and substrates present during adhesion and biofilm development can influence clinical treatment is unclear.

Purpose: The purpose of this in vitro study was to investigate the growth kinetics of C. albicans biofilms on surfaces of specimens under the influence of adsorbed films and to evaluate the antibiofilm efficacy of antifungal agents: amphotericin B, fluconazole, and nystatin.

Material And Methods: Specimens of Silagum-Comfort Soft Relining were submerged in preconditioning systems: phosphate-buffered saline, artificial saliva, fetal bovine serum, and artificial saliva+fetal bovine serum. Planktonic cells were incubated (phosphate-buffered saline+specimens) for 1.5 hours (adhesion phase) and washed with phosphate-buffered saline solution. The specimens were then incubated (YNB+glucose) for 8, 24, and 48 hours (initial, intermediate, and maturation phases). The biofilm sessile minimum inhibitory concentration was determined by the broth microdilution method (7.81 to 500 μg/mL). The metabolic activity of the biofilms was tested by colorimetric assay (cell metabolic activity). Cell viability, relative biomass (μm), and the thickness of the biofilm (μm) were evaluated by confocal laser scanning microscopy.

Results: The highest bioactivity was recorded in the presence of fetal bovine serum. Biofilms treated with fluconazole and amphotericin B were partially inhibited in a dose-dependent manner. Nystatin inhibited metabolic activity mainly from ≥15.63 or 62.5 μg/mL. Variations in magnitude parameters (relative biomass and thickness) were observed depending on the development phases of biofilms, whereas biological parameters (percentage of nonviable cells) were constant throughout the formation of C. albicans biofilms.

Conclusions: The data suggest that partial (fluconazole and amphotericin B) or more effective (nystatin) reduction of metabolic activity of C. albicans biofilms occurred depending on the time and the antifungal and its concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2020.10.018DOI Listing

Publication Analysis

Top Keywords

metabolic activity
16
albicans biofilms
12
bovine serum
12
amphotericin fluconazole
8
candida albicans
8
phosphate-buffered saline
8
fetal bovine
8
relative biomass
8
fluconazole amphotericin
8
biofilms
7

Similar Publications

Exploring the Ascorbate Requirement of the 2-Oxoglutarate-Dependent Dioxygenases.

J Med Chem

January 2025

Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.

In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.

View Article and Find Full Text PDF

Purpose: Prior noncontemporary studies showed that oral cyclophosphamide is an active treatment of metastatic castration-resistant prostate cancer (mCRPC). However, cyclophosphamide is currently underutilized in routine clinical practice given the lack of survival benefit and the emergence of more effective treatments.

Methods: We retrospectively reviewed our institutional database to identify patients with mCRPC treated with cyclophosphamide.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!