Relating starter cultures to volatile profile and potential markers in green Spanish-style table olives by compositional data analysis.

Food Microbiol

Área de Nutrición y Bromatología, Dpto. Nutrición y Bromatología, Toxicología y Medicina Legal Facultad de Farmacia, Universidad de Sevilla, C/P. García González, nº 2, 41012, Seville, Spain.

Published: April 2021

This work relates native lactic acid bacteria (LAB) (Lactobacillus pentosus LPG1, L. pentosus Lp13, and Lactobacillus plantarum Lpl15) and yeast (Wickerhamomyces anomalus Y12) starters to the volatile components (VOCs) produced in green Spanish-style table olives. For this aim, the VOC profile was considered as compositional data (CoDa). The CoDa analysis generated new information on the relationship among inocula and VOCs through the tetrahedral plot, CoDa-biplot, variation array matrix, and CoDa dendrogram. The ilr (which includes pivot) coordinates (Euclidean space) from VOCs produced more reliable starters' clustering than the original data. The potential VOC markers, identified by a test based on the pairwise comparison of the logratio variation arrays from the whole data set and the individual groups, were (starters in the parenthesis): 2-phenylethyl acetate (LPG1, Y12, Y12 + LAB), methanol (Lpl15), cis-2-penten-1-ol (LPG1, Y12, Y12 + LAB), 2-methyl-3-hexanol (LPG1, Y12), U (non-identified) C (m/z 83-112-97) (Y12) and UF (m/z 95-154-110) (LPG1, Y12 + LAB). Besides, some VOCs were partial/totally inhibited by specific starters: 2-methyl-1-propanol (Lp13, Y12 + LAB), 2-phenyl ethanol (Lp13), furfuryl methyl ether (Y12 + LAB), purpurocatechol (Y12, Y12 + LAB), 4-ethyl guaiacol (Lp13, Lpl15), 4-ethyl phenol (Lpl15), 5-tert-butylpyrogallol (Lp13, Lpl15), and UE (m/z 111-198) (Lp13). A better understanding of the relationship between starters and their VOC may facilitate modelling the flavour and quality of Spanish-style green table olive fermentations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2020.103659DOI Listing

Publication Analysis

Top Keywords

lpg1 y12
12
y12 y12 + lab
12
green spanish-style
8
spanish-style table
8
table olives
8
compositional data
8
vocs produced
8
lp13 lpl15
8
lp13
6
y12
6

Similar Publications

The process of biofilm formation during table olive fermentation is crucial to turning this fermented vegetable into a probiotic food. Some phenolic compounds have been described as important quorum-sensing molecules during biofilm development. The present in vitro study examined the effects of three phenolic compounds widely found in table olive fermentations (Oleuropein 0-3000 ppm, Hydroxytyrosol 0-3000 ppm, and Tyrosol 0-300 ppm) on the development of single biofilm by diverse microorganisms isolated from table olives ( 13B4, Lp119, and LPG1; Lp15 and LAB23; and yeasts Y12, Y13, and Y18).

View Article and Find Full Text PDF

To turn table olives into appropriate carriers of beneficial bacteria and yeasts to consumers, it is essential to have reliable methods for analysing microorganisms in biofilms. This work validates the application of a non-destructive procedure to study the lactic acid bacteria and yeasts distribution in fruits during Spanish-style green table olive fermentations. Laboratory-scale fermentations were inoculated simultaneously with three Lactiplantibacillus pentosus strains (LPG1, 119, and 13B4) and two yeasts (Wickerhamomyces anomalus Y12 and Saccharomyces cerevisiae Y30), all of them natives of table olive fermentations.

View Article and Find Full Text PDF

Relating starter cultures to volatile profile and potential markers in green Spanish-style table olives by compositional data analysis.

Food Microbiol

April 2021

Área de Nutrición y Bromatología, Dpto. Nutrición y Bromatología, Toxicología y Medicina Legal Facultad de Farmacia, Universidad de Sevilla, C/P. García González, nº 2, 41012, Seville, Spain.

This work relates native lactic acid bacteria (LAB) (Lactobacillus pentosus LPG1, L. pentosus Lp13, and Lactobacillus plantarum Lpl15) and yeast (Wickerhamomyces anomalus Y12) starters to the volatile components (VOCs) produced in green Spanish-style table olives. For this aim, the VOC profile was considered as compositional data (CoDa).

View Article and Find Full Text PDF

In this work, Lactobacillus pentosus LPG1, Lactobacillus pentosus Lp13, Lactobacillus plantarum Lpl15, and Wickerhanomyces anomalous Y12, all of them previously isolated from fermented table olive biofilms, were used (alone or in combination) as multifunctional starters for Manzanilla Spanish-style green table olive fermentations. Their performances were evaluated through the changes in the key physico-chemical and microbiological parameters, correlation between AI-2 production and biofilm formation, inoculum imposition, metataxonomic analysis and sensory characteristics of the finished products. Inoculation only with lactic acid bacteria (LAB) strains led to higher titratable acidities and lower pH values than the spontaneous fermentation (non-inoculated control), mainly during the first steps of processing.

View Article and Find Full Text PDF

In this work, Manzanilla Spanish-style green table olive fermentations were inoculated with LPG1, Lp13, Lpl15, the yeast Y12 and a mixed culture of all them. After fermentation (65 days), their volatile profiles in brines were determined by gas chromatography-mass spectrometry analysis. A total of 131 volatile compounds were found, but only 71 showed statistical differences between at least, two fermentation processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!