Despite Saccharomyces cerevisiae being a synonym for baker's yeast, the species does not perform well in all baking-related conditions. In particular, dough fermentation, or proofing, is compromised by the species' sensitivity to the low and freezing temperatures that are often used in modern bakeries. Here, screening trials that included representatives of all known Saccharomyces species, showed that S. cerevisiae was generally the most sensitive member of the genus with respect to cold and freezing conditions. We hypothesized therefore that the superior cold tolerance of the non-S. cerevisiae yeast would enable their use as frozen-dough baking strains. To test this, the different yeast species were incorporated into doughs, flash frozen and kept in a frozen state for 14 days. During the proofing stage, dough development was lower in doughs that had been frozen, relative to fresh doughs. This reduction in fermentation performance was however most pronounced with S. cerevisiae. The psychrotolerant yeasts S. eubayanus, S. jurei and S. arboricola showed a strong capacity for post-freeze proofing in terms of dough development and duration of lag phase prior to fermentation. The superior proofing power of these species resulted in breads that were significantly softer and less dense than those prepared with S. cerevisiae. A sensory panel could distinguish the S. cerevisiae and non-S. cerevisiae breads based on their physical properties, but aroma and taste were unaffected by the species employed. To further improve frozen dough baking properties, S. eubayanus, S. jurei and S. arboricola were crossed with baker's yeast through rare mating, and hybrids with improved proofing capacities in both fresh and frozen doughs relative to the parents were created. The use of S. jurei and S. arboricola in baking represents the first potential technological application of these species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2020.103640 | DOI Listing |
Int J Food Microbiol
January 2025
Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain. Electronic address:
Yeast optimisation has been crucial in improving the quality and efficiency of beer production, one of the world's most widely consumed beverages. In this context, rare mating hybridisation is a promising technique for yeast optimization to generate novel and improved non-GMO strains. The limitation of this technique is the lack of knowledge and comparable data on yeast strains hybridisable to Saccharomyces cerevisiae, probably the most important yeast species in beer production.
View Article and Find Full Text PDFInt J Mol Sci
November 2022
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain.
Iron is an indispensable element that participates as an essential cofactor in multiple biological processes. However, when present in excess, iron can engage in redox reactions that generate reactive oxygen species that damage cells at multiple levels. In this report, we characterized the response of budding yeast species from the genus to elevated environmental iron concentrations.
View Article and Find Full Text PDFFood Microbiol
April 2021
VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland.
Despite Saccharomyces cerevisiae being a synonym for baker's yeast, the species does not perform well in all baking-related conditions. In particular, dough fermentation, or proofing, is compromised by the species' sensitivity to the low and freezing temperatures that are often used in modern bakeries. Here, screening trials that included representatives of all known Saccharomyces species, showed that S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!