A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity.

Carbohydr Polym

Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States; Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, United States. Electronic address:

Published: February 2021

Bacterial resistance to antibiotics is a critical public health concern. Alternatives of antibiotics are needed urgently. Herein, we designed and engineered a new nano-antimicrobial, chitosan nanoparticles (CNs)-antimicrobial peptide microcin J25 (MccJ25) conjugates (CNMs). The engineered CNMs proved to be highly active against Gram-negative and Gram-positive bacteria, and the activity of CNMs and CNs was stable in various thermal and pH environments. Escherichia coli K88 strain treated with CNMs did not acquire resistance in serial passage assays over a period of 18 days. Risk assessment with cell lines showed that CNMs did not cause toxicity. Additionally, CNMs did not reduce the lifespan of C. elegans. In summary, this study demonstrated that CNMs can serve as an excellent novel antimicrobial agent against multi-drug resistance pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.117309DOI Listing

Publication Analysis

Top Keywords

chitosan nanoparticles
8
peptide microcin
8
microcin j25
8
cnms
7
novel nanohybrid
4
nanohybrid antimicrobial
4
antimicrobial based
4
based chitosan
4
nanoparticles antimicrobial
4
antimicrobial peptide
4

Similar Publications

Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.

View Article and Find Full Text PDF

Embedment of Biosynthesised Silver Nanoparticles in PolyNIPAAm/Chitosan Hydrogel for Development of Proactive Smart Textiles.

Nanomaterials (Basel)

December 2024

Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia.

A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres.

View Article and Find Full Text PDF

Silver nitroprusside complex nanoparticles (AgN NPs) have garnered significant attention for their antimicrobial properties. However, challenges such as toxicity and limited biocompatibility often hinder their practical applications. Therefore, this study introduces a combined approach to fabricating AgN NPs with chitosan (CS), resulting in CS-AgN nanocomposites (CS-AgN NCs) with cytocompatibility.

View Article and Find Full Text PDF

Chitosan-based nanocomposite films incorporated with AgNPs/porphyrinic MOFs for killing pathogenic bacteria.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China. Electronic address:

In this work, a nanocomposite film, designated as CS/PA, was fabricated by integrating chitosan (CS), porphyrinic porous coordination network (PCN), and silver nanoparticles (AgNPs). PCN modified AgNPs was denoted as PCN-AgNPs (PA). The synthesis of PA was verified through transmission electron microscope, Zeta potential, hydrated particle size, element mapping.

View Article and Find Full Text PDF

Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability.

Int J Biol Macromol

January 2025

Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!