Properties of extruded cross-linked waxy maize starches and their effects on extruded oat flour.

Carbohydr Polym

Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA. Electronic address:

Published: February 2021

The objectives of this study were to study the extrusion of cross-linked waxy maize starches (CLWMS) with different cross-linking levels and their function as a secondary ingredient in extruded oat flour (OF) formulations. CLWMS (18 %) and OF (82 %) were hydrated to 20 % moisture content and subjected to twin-screw extrusion at the screw speed of 350 rpm. Low cross-linking level of CLWMS (0.05 % sodium trimetaphosphate/sodium tripolyphosphate) in OF formulation increased the void fraction and reduced the breaking strength of extrudates. The low cross-linked starch was more resistant to breakdown and had a higher pasting viscosity than the unmodified starch. Higher cross-linking levels of CLWMS restricted swelling of starch granule and increased the resistant starch level of OF formulation but had very poor structural and textural properties. Varying the level of cross-linking offers an alternative way to manipulate the structural, textural and nutritional properties of extrudates in snack and cereal applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.117259DOI Listing

Publication Analysis

Top Keywords

cross-linked waxy
8
waxy maize
8
maize starches
8
extruded oat
8
oat flour
8
cross-linking levels
8
structural textural
8
properties extruded
4
extruded cross-linked
4
starches effects
4

Similar Publications

Green synthesis of starch/chitosan complex via ozone-mediated Schiff reaction: Structure, thermal behaviors and surface properties.

Int J Biol Macromol

January 2025

Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China. Electronic address:

Ozone was used as a green and environmentally friendly initiator to directly induce a Schiff base cross-linking reaction between chitosan and waxy rice starch (CS) in the present investigation. The effects of oxidation on the structure of chitosan/starch bio-based composite, along with the cross-linked structure formation via Schiff base reaction, were investigated and confirmed using FTIR, XRD, and XPS characterization techniques. The formation of new bonds (C=N) along with other attributes imparted by the cross-linking reaction were evaluated and characterized.

View Article and Find Full Text PDF

Impact of starch amylose and amylopectin on the rheological and 3D printing properties of corn starch.

Int J Biol Macromol

October 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China. Electronic address:

This study evaluated the influence of the amylose and amylopectin on the physicochemical properties and printing performance of corn starch gels. Amylose in starch-based gels enhances their storage modulus and the support performance of printed products by promoting the formation of cross-linked gel structures and crystalline structures. However, the higher amylose content in starch gels makes extrusion difficult, resulting in intermittent extrusion in 3D printing.

View Article and Find Full Text PDF

Experimental viscoelastic data and the corresponding theoretical analysis of corn starch paste in the past 30 years indicate an evident deficiency of the viscoelastic characterization of the paste. The purposes of the study are to check the capability of a recent model on describing the viscoelasticity of the paste and to improve the viscoelastic analysis. The linear viscoelastic property; the steady shear viscosity and the first normal stress difference () of a cross-linked waxy corn starch paste mixed with sucrose experimentally reported in 2003 were characterized with a structuralized viscoelastic constitutive equation in the present paper.

View Article and Find Full Text PDF

Removal of starch granule-associated surface and channel lipids alters the properties of sodium trimetaphosphate crosslinked maize starch.

Int J Biol Macromol

October 2022

Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Starch granule-associated surface and channel lipids (SGALs) were effectively removed from waxy maize starch (WMS) and normal maize starch (NMS), then the starches were crosslinked by different levels of sodium trimetaphosphate (STMP) (0.25 %, 0.5 %, 1 % and 2 %).

View Article and Find Full Text PDF

Starches from normal maize (NM), normal potato (NP), waxy maize (WM), and waxy potato (WP) were cross-linked with seven different concentrations (0.01, 0.05, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!