ZxNHX1 indirectly participates in controlling K homeostasis in the xerophyte Zygophyllum xanthoxylum.

Funct Plant Biol

State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China; and Corresponding author. Email:

Published: March 2021

The succulent xerophyte Zygophyllum xanthoxylum (Bunge) Engl. can absorb Na+ from the soil as an osmoticum in order to resist osmotic stress. The tonoplast Na+/H+ antiporter ZxNHX1 is essential for maintaining the salt-accumulation characteristics of Z. xanthoxylum by compartmentalizing Na+ into vacuoles. Previous results revealed that the silencing of ZxNHX1 greatly decreased Na+ accumulation in Z. xanthoxylum under 50 mM NaCl due to the weakened compartmentalisation; in addition, K+ concentration also significantly reduced in ZxNHX1-RNAi lines. Yet, whether the reduction of K+ concentration was directly triggered by the silencing of ZxNHX1 remains unclear. In this study, the growth parameters and expression levels of ZxSOS1, ZxHKT1;1, ZxAKT1 and ZxSKOR were measured in wild-type and ZxNHX1-RNAi lines under control or -0.5 MPa osmotic stress. The results showed that the silencing of ZxNHX1 inhibited the plant growth, decreased Na+ concentration in leaves, reduced the transcript abundance of ZxSOS1 and dramatically increased that of ZxHKT1;1 in roots of Z. xanthoxylum under osmotic stress; whereas tissue K+ concentrations and the expression level of ZxSKOR displayed no significant variations, and the expression of ZxAKT1 were significantly reduced in ZxNHX1-RNAi lines under osmotic stress, compared with the wild type. These results suggest that in Z. xanthoxylum, ZxNHX1 can maintain the normal growth by compartmentalizing Na+ into vacuoles, and regulate the spatial distribution of Na+ indirectly by affecting the expressions of ZxSOS1 and ZxHKT1;1. Moreover, the silencing of ZxNHX1 is not the main reason that led to the reduction of K+ concentration in ZxNHX1-RNAi lines under 50 mM NaCl, and ZxNHX1 might be indirectly involved in regulating K+ homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP20185DOI Listing

Publication Analysis

Top Keywords

osmotic stress
16
silencing zxnhx1
16
zxnhx1-rnai lines
16
zxnhx1
8
zxnhx1 indirectly
8
xerophyte zygophyllum
8
zygophyllum xanthoxylum
8
compartmentalizing na+
8
na+ vacuoles
8
decreased na+
8

Similar Publications

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.

View Article and Find Full Text PDF

Mechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!