Background: Mutations in the IRF2BPL gene can cause neurodevelopmental disorders. We describe the clinical and genetic characteristics of a Chinese patient with a novel abnormality in this gene, explore the potential pathogenic mechanism and summarize the clinical characteristics of 25 patients with IRF2BPL mutations.
Methods: We identified the gene mutation sites by whole-exome and Sanger sequencing. The protein-protein interaction network of the IRF2BPL gene was constructed using bioinformatic techniques, and its function was enriched. We conducted a functional experiment to explore the potential pathogenicity of the identified IRF2BPL gene mutation.
Results: An 8-year-old girl presented with progressive cerebellar ataxia, including involuntary tremor and slurred speech. Electroencephalography and electromyography revealed no abnormalities. Structural cranial MRI was also normal, but genetic analysis identified a truncating de novo variant in IRF2BPL. Bioinformatics predicted that IRF2BPL would be associated with IRF2 and 10 other genes and involved in ubiquitin binding and other pathways. The cellular location of IRF2BPL was altered, and compared to control cells, the level of ubiquitinated proteins was significantly decreased in cells harbouring the mutation.
Conclusion: In this study, we identified a truncating de novo variant of IRF2BPL as a causative gene in the neurodevelopmental disorder of a Chinese girl. Impairment of the ubiquitin-proteasome pathway caused by this IRF2BPL mutation may play an important role in this neurodevelopmental disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.seizure.2020.11.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!