A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How the use of a short channel can improve the separation efficiency of nanoparticles in asymmetrical flow field-flow fractionation. | LitMetric

How the use of a short channel can improve the separation efficiency of nanoparticles in asymmetrical flow field-flow fractionation.

J Chromatogr A

Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain.

Published: January 2021

The use of a commercially available short length channel (14 cm length) is proposed to improve the efficiency associated to the separation by asymmetrical flow field-flow fractionation of particles in the nanometer range respect to a standard channel (27 cm length). The effect of channel length on elution times, separation efficiency and resolution have been studied. Polystyrene particles between 50 and 500 nm in size have been used to compare the behavior of both channels. Theoretical aspects based on the different contributions on particle diffusion inside the channel during the separation process have been considered to justify the results obtained. Non-equilibrium diffusion contribution to the efficiency has shown to be the most relevant aspect to be controlled during the separation. The increment of the field strength applied through the cross-flow velocityallows the reduction of diffusion while keep elution times constant. The use of the same cross-flow in a channel with a smaller area is the key factor that justifies the better efficiencies observed along the whole size range studied (improvements that reach factors up to 4.7 in experimental efficiency respect to the standard channel were achieved). The separation of polystyrene particles of 100 and 200 nm was achieved with a resolution of 1.20, whereas a 0.66 value was obtained with the standard channel at the same elution times. Channel recoveries have been also compared under optimized conditions to ensure that no side effects are produced, including the separation of mixtures of TiO nanoparticles. Similar or even better values were obtained with the short length channel, with recoveries higher than 85% for all the polystyrene particles tested and 75% recovery for the TiO nanoparticle mixture, which justifies its use for the separation of nanoparticles, providing better resolutions without compromise elution times or recoveries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461759DOI Listing

Publication Analysis

Top Keywords

elution times
16
length channel
12
channel length
12
standard channel
12
polystyrene particles
12
channel
9
separation
8
separation efficiency
8
asymmetrical flow
8
flow field-flow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!