The field of evolutionary algorithms (EAs) emerged in the area of computer science due to transfer of ideas from biology and developed independently for several decades, enriched with techniques from probability theory, complexity theory and optimization methods. In this paper, we consider some recent results form the EAs theory transferred back into biology. The well-known biotechnological procedure SELEX (Systematic Evolution of Ligands by EXponential enrichment) is viewed as an experimental implementation of an evolutionary algorithm. Theoretical bounds on EAs runtime are applied to model SELEX search for a regulatory region consisting of promoter and enhancer sequences. A comparison of theoretical bounds to the results of computational simulation indicates some cases where the theoretical bounds give favorable prediction, while simulation requires prohibitive computational resource.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2020.104312 | DOI Listing |
Biometrics
October 2024
RAND Corporation, Pittsburgh, PA 15213, United States.
Health care decisions are increasingly informed by clinical decision support algorithms, but these algorithms may perpetuate or increase racial and ethnic disparities in access to and quality of health care. Further complicating the problem, clinical data often have missing or poor quality racial and ethnic information, which can lead to misleading assessments of algorithmic bias. We present novel statistical methods that allow for the use of probabilities of racial/ethnic group membership in assessments of algorithm performance and quantify the statistical bias that results from error in these imputed group probabilities.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6102, Australia.
Accurate Rayleigh and Raman scattering cross sections, tensor components, depolarization ratios, and reversal coefficients for all rovibrational transitions within the X1Σg+ ground electronic state of H2 have been calculated. Raman spectra have been generated using these data. A method for calculating Raman scattering cross sections is formulated that is valid below the ionization threshold and in the region containing resonances, which explicitly accounts for all bound and dissociative vibrational levels of the bound intermediate electronic states and approximately accounts for the ionization continuum.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
The reaction coefficient for hydrogen/deuterium (H/D) exchange and the diffusion of hydrated excess protons within amorphous solid water (ASW) are characterized as a function of temperature. For these experiments, water films are deposited on a Pt(111) substrate at 108 K, and reactions with pre-adsorbed hydrogen atoms produce hydrated protons. Upon heating, protons diffuse within the water, and H/D exchange occurs when they encounter D2O probe molecules deposited in the films.
View Article and Find Full Text PDFNeural Netw
December 2024
College of Science, Shantou University, Shantou 515063, China. Electronic address:
Graph Out-of-Distribution (OOD), requiring that models trained on biased data generalize to the unseen test data, has considerable real-world applications. One of the most mainstream methods is to extract the invariant subgraph by aligning the original and augmented data with the help of environment augmentation. However, these solutions might lead to the loss or redundancy of semantic subgraphs and result in suboptimal generalization.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Instituto IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain.
Graphene adsorbed on Ru(0001) has been widely used as a template for adsorbing and isolating molecules, assembling organic-molecule structures with desired geometric and electronic properties and even inducing chemical reactions that are challenging to achieve in the gas phase. To fully exploit the potential of this substrate, for example, by being able to tune a graphene-based catalyst to perform optimally under specific conditions, it is crucial to understand the factors and mechanisms governing the molecule-substrate interaction. To contribute to this effort, we have conducted a combined experimental and theoretical study of the adsorption of cyanomethyl radicals (-CHCN) on this substrate below room temperature by performing scanning tunneling microscopy experiments and density functional theory simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!