Background: Glucocerebrosidase gene mutations are a common genetic risk factor for Parkinson's disease. They exhibit incomplete penetrance. The objective of the present study was to measure microglial activation and dopamine integrity in glucocerebrosidase gene mutation carriers without Parkinson's disease compared to controls.

Methods: We performed PET scans on 9 glucocerebrosidase gene mutation carriers without Parkinson's disease and 29 age-matched controls. We measured microglial activation as C-(R)-PK11195 binding potentials, and dopamine terminal integrity with F-dopa influx constants.

Results: The C-(R)-PK11195 binding potential was increased in the substantia nigra of glucocerebrosidase gene carriers compared with controls (Student t test; right, t = -4.45, P = 0.0001). Statistical parametric mapping also localized significantly increased C-(R)-PK11195 binding potential in the occipital and temporal lobes, cerebellum, hippocampus, and mesencephalon. The degree of hyposmia correlated with nigral C-(R)-PK11195 regional binding potentials (Spearman's rank, P = 0.0066). Mean striatal F-dopa uptake was similar to healthy controls.

Conclusions: In vivo C-(R)-PK11195 PET imaging detects neuroinflammation in brain regions susceptible to Lewy pathology in glucocerebrosidase gene mutation carriers without Parkinson's. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048428PMC
http://dx.doi.org/10.1002/mds.28375DOI Listing

Publication Analysis

Top Keywords

glucocerebrosidase gene
20
mutation carriers
16
carriers parkinson's
16
parkinson's disease
16
microglial activation
12
gene mutation
12
c-r-pk11195 binding
12
binding potentials
8
binding potential
8
glucocerebrosidase
6

Similar Publications

African ancestry neurodegeneration risk variant disrupts an intronic branchpoint in .

medRxiv

February 2024

Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (). This variant (rs3115534-G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas.

View Article and Find Full Text PDF

Developing Allosteric Chaperones for -Associated Disorders-An Integrated Computational and Experimental Approach.

Int J Mol Sci

December 2024

Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain.

Mutations in the gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are associated with Gaucher disease and increased risk of Parkinson's disease. This study describes the discovery and characterization of novel allosteric pharmacological chaperones for GCase through an innovative computational approach combined with experimental validation. Utilizing virtual screening and structure-activity relationship optimization, researchers identified several compounds that significantly enhance GCase activity and stability across various cellular models, including patient-derived fibroblasts and neuronal cells harboring mutations.

View Article and Find Full Text PDF

An Overview of Gaucher Disease.

Diagnostics (Basel)

December 2024

Unidad de Investigación Epidemiológica y en Servicios de Salud, Centro Médico Nacional de Occidente Órgano de Operación Administrativa Desconcentrada Jalisco, Instituto Mexicano del Seguro Social, Guadalajara 44329, Jalisco, Mexico.

Background: Gaucher disease (GD) is a rare autosomal recessive disorder caused by mutations in the GBA1 gene that lead to a deficiency in the glucocerebrosidase gene. This deficiency results in the accumulation of glucocerebrosides in macrophages, primarily affecting the liver, spleen, and bone marrow. Focusing on the Mexican population, this study aims to review GD's epidemiology, clinical manifestations, and treatment options to enhance early diagnosis and optimize treatment outcomes.

View Article and Find Full Text PDF

Parkinson's disease (PD) is considered to be the second most prominent neurodegenerative disease and has a global prevalence. Glucocerebrosidase () gene mutations represent a significant hereditary risk factor for the development of PD and have a profound impact on the motor and cognitive progression of the disease. The aim of this review is to summarize the literature data on the prevalence, type, and peculiarities of mutations in populations of different ethnic backgrounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!