The lack of symptoms at the early stages of clear cell renal cell carcinoma (ccRCC) allows the tumour to metastasize, leading to a dramatic reduction in patient survival. Therefore, we studied and set up a method based on urinary microRNAs (miRNAs) for the diagnosis of ccRCC. First, miRNA expression in ccRCC specimens and kidney tissues from healthy subjects (HSs) was investigated through analysis of data banks and validated by comparing expression of miRNAs in ccRCC and adjacent non-cancerous kidney tissue specimens by RT-qPCR. Subsequently, we developed an algorithm to establish which miRNAs are more likely to be found in the urine of ccRCC patients that indicated miR-122, miR-1271, and miR-15b as potential interesting markers. The evaluation of their levels and three internal controls in the urine of 13 patients and 14 HSs resulted in the development of a score (7p-urinary score) to evaluate the presence of ccRCC in patients. The resulting area under the Receiver Operating Characteristic (ROC) curve, sensitivity, and specificity were equal to 0.96, 100% (95% CI 75-100%), and 86% (95% CI 57-98%), respectively. In conclusion, our study provides a proof of concept that combining the expression values of some urinary miRNAs might be useful in the diagnosis of ccRCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718885 | PMC |
http://dx.doi.org/10.1038/s41598-020-77774-9 | DOI Listing |
Crit Rev Oncol Hematol
December 2024
Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands.
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments.
View Article and Find Full Text PDFTalanta
December 2024
Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China.
Developing a fluorescence sensing platform for point-of-care detection of low abundance biomarkers is highly valuable for early diagnosis of disease. Herein, a biomimetic fluorescence-enhanced platform based on photonic crystals and DNAzyme walker was constructed and further applied to visualize and quantify the miRNA-21 in biological samples. The DNAzyme walker was orthogonally activated by the target miRNA-21, which enabled the unlocking of the DNAzyme walker strand and the subsequently repeated substrate cleavage, thus generating enhanced fluorescence signals.
View Article and Find Full Text PDFMol Cancer
December 2024
NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
RNA modifications are widespread throughout the mammalian transcriptome and play pivotal roles in regulating various cellular processes. These modifications are strongly linked to the development of many cancers. One of the most prevalent forms of RNA modifications in humans is adenosine-to-inosine (A-to-I) editing, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) in double-stranded RNA (dsRNA).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electricity and Energy, Selcuk University, Konya, Turkey.
microRNAs (miRNAs) are non-coding RNA molecules that influence the development and progression of many diseases. Research have documented that miRNAs have a significant role in the prevention, diagnosis, and treatment of complex human diseases. Recently, scientists have devoted extensive resources to attempting to find the connections between miRNAs and diseases.
View Article and Find Full Text PDFObes Res Clin Pract
December 2024
Department of General Practice, Geriatric Hospital Affiliated To Wuhan University of Science and Technology, Wuhan 433000, China. Electronic address:
Background: microRNAs (miRNAs) could mediate the glucose and lipid metabolism progress in metabolic syndrome (MetS).
Objectives: To analyze the value of miRNA (miR)-21-5p for MetS diagnosis in children with obesity. Function of miR-21-5p has been explored by the prediction of target genes and functional and pathway enrichment analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!