Fibroblast growth factor (FGF) 21 is a class of hepatokines that plays a protective role against obesity, insulin resistance, and liver damage. Despite this, protective effects of FGF21 in human appear to be minimal, possibly due to its proteolytic cleavage by the fibroblast activation protein (FAP). Here, we presented a novel FAP inhibitor, BR103354, and described its pharmacological activities as a potential therapeutic agent for the treatment of metabolic disorders. BR103354 inhibited FAP with an IC value of 14 nM, showing high selectivity against dipeptidyl peptidase (DPP)-related enzymes and prolyl oligopeptidase (PREP). In differentiated 3T3/L1 adipocytes, the addition of FAP diminished hFGF21-induced Glut1 and phosphorylated levels of ERK, which were restored by BR103354. BR103354 exhibited good pharmacokinetic properties as evidenced by oral bioavailability of 48.4% and minimal hERG inhibition. Single co-administration of BR103354 with hFGF21 reduced nonfasting blood glucose concentrations, in association with increased intact form of hFGF21 in ob/ob mice. Additionally, chronic treatment of BR103354 for 4 weeks reduced nonfasting blood glucose concentrations with improved glucose tolerance and with reduced triglyceride (TG) content in liver of ob/ob mice. Consistently, BR103354 improved hepatic steatosis and fibrosis in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced non-alcoholic steatohepatitis (NASH) mouse model. FAP inhibitory effects of BR103354 were confirmed in normal cynomolgus monkeys. Together, BR103354 acts as an effective FAP inhibitor in vitro and in vivo, thereby demonstrating its potential application as an anti-diabetic and anti-NASH agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718273 | PMC |
http://dx.doi.org/10.1038/s41598-020-77978-z | DOI Listing |
Cancer Sci
January 2025
Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [F], [Cu], and [Ga].
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
Fibroblast activation protein (FAP), predominantly expressed in activated fibroblasts, plays a key role in inflammatory bone diseases, but its role in periodontitis remains unclear. Accordingly, this study identified a positive association between FAP levels and periodontitis susceptibility using Mendelian randomization analysis. Human and mouse periodontitis tissues show elevated FAP and reduced osteolectin (OLN), an endogenous FAP inhibitor, indicating a FAP/OLN imbalance.
View Article and Find Full Text PDFArkh Patol
December 2024
Lomonosov Moscow State University, Moscow, Russia.
Bioconjug Chem
December 2024
Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States.
Cancer-associated fibroblasts (CAFs) expressing fibroblast activation protein alpha (FAP) are abundant in tumor microenvironments and represent an emerging target for PET cancer imaging. While different quinolone-based small molecule agents have been developed for whole-body imaging, there is a scarcity of well-validated fluorescent small molecule imaging agents to better study these cells in vivo. Here, we report the synthesis and characterization of a series of fluorescent FAP imaging agents based on the common quinolone azide inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!