TIGIT is an immune checkpoint inhibitor expressed by effector CD4 and CD8 T cells, NK cells, and regulatory T cells (Tregs). Inhibition of TIGIT-ligand binding using antagonistic anti-TIGIT mAbs has shown potential to restore T-cell function and therapeutic efficacy in murine tumor models when combined with an anti-PD(L)-1 antibody. In the current work, we demonstrate broader TIGIT expression than previously reported in healthy donors and patients with cancer with expression on γδ T cells, particularly in CMV-seropositive donors, and on tumor cells from hematologic malignancies. Quantification of TIGIT density revealed tumor-infiltrating Tregs as the population expressing the highest receptor density. Consequently, the therapeutic potential of anti-TIGIT mAbs might be wider than the previously described anti-PD(L)-1-like restoration of αβ T-cell function. CD155 also mediated inhibition of γδ T cells, an immune population not previously described to be sensitive to TIGIT inhibition, which could be fully prevented via use of an antagonistic anti-TIGIT mAb (EOS-448). In PBMCs from patients with cancer, as well as in tumor-infiltrating lymphocytes from mice, the higher TIGIT expression in Tregs correlated with strong antibody-dependent killing and preferential depletion of this highly immunosuppressive population. Accordingly, the ADCC/ADCP-enabling format of the anti-TIGIT mAb had superior antitumor activity, which was dependent upon Fcγ receptor engagement. In addition, the anti-TIGIT mAb was able to induce direct killing of TIGIT-expressing tumor cells both in human patient material and in animal models, providing strong rationale for therapeutic intervention in hematologic malignancies. These findings reveal multiple therapeutic opportunities for anti-TIGIT mAbs in cancer therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-20-0464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!