AI Article Synopsis

  • Familial neurodegenerative diseases often involve mutations that affect either protein functions or the mechanisms that degrade these proteins, with UBQLN2 being a key factor linked to ALS and frontotemporal dementia.
  • A study using advanced proteomics explored UBQLN2's role and discovered its influence on various physiological pathways, particularly serotonergic signaling, as well as an increase in certain proteasome subunits which might indicate a compensatory mechanism.
  • The research identified specific proteins, including TRIM32 and PEG10, whose levels are linked to UBQLN2 functionality and revealed that while UBQLN2 promotes the degradation of many proteins, it protects the Gag-like protein CXX1B from degradation.

Article Abstract

Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873701PMC
http://dx.doi.org/10.1074/jbc.RA120.015960DOI Listing

Publication Analysis

Top Keywords

ubqln2
9
murine models
8
mutations result
8
aberrant proteins
8
proteins
7
global proteomics
4
proteomics ubqln2-based
4
ubqln2-based murine
4
models als
4
als familial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!