Segmentation of biomedical images based on a computational topology framework.

Semin Immunol

Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 460, Heidelberg, 69120, Germany; Division of Translational Immunotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany. Electronic address:

Published: April 2020

The homology groups of a topological space provide us with information about its connectivity and the number and type of holes in it. This type of information can find practical applications in describing the intrinsic structure of an image, as well as in identifying equivalence classes in collections of images. When computing homological characteristics, the existence and strength of the relationships between each pair of points in the topological space are studied. The practical use of this approach begins by building a topological space from the image, in which the computation of the homology groups can be carried out in a feasible time. Once the homological properties are obtained, what follows is the task of translating such information into operations such as image segmentation. This work presents a technique for denoising persistent diagrams and reconstructing the shape of segmented objects using the remaining classes on the diagram. A case study for the segmentation of cell nuclei in histological images is used for demonstration purposes. With this approach: a) topological denoising is achieved by aggregating trivial classes on the persistence diagram, and b) a growing seed algorithm uses the information obtained during the construction of the persistence diagram for the reconstruction of the segmented cell structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.smim.2020.101432DOI Listing

Publication Analysis

Top Keywords

topological space
12
homology groups
8
persistence diagram
8
segmentation biomedical
4
biomedical images
4
images based
4
based computational
4
computational topology
4
topology framework
4
framework homology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!