For Protected Geographical Indication (PGI)-labeled products, such as the dry-cured beef meat "cecina de León", a sensory analysis is compulsory. However, this is a complex and time-consuming process. This study explores the viability of using near infrared spectroscopy (NIRS) together with artificial neural networks (ANN) for predicting sensory attributes. Spectra of 50 samples of cecina were recorded and 451 reflectance data were obtained. A feedforward multilayer perceptron ANN with 451 neurons in the input layer, a number of neurons varying between 1 and 30 in the hidden layer, and a single neuron in the output layer were optimized for each sensory parameter. The regression coefficient R squared (RSQ > 0.8 except for odor intensity) and mean squared error of prediction (MSEP) values obtained when comparing predicted and reference values showed that it is possible to predict accurately 23 out of 24 sensory parameters. Although only 3 sensory parameters showed significant differences between PGI and non-PGI samples, the optimized ANN architecture applied to NIR spectra achieved the correct classification of the 100% of the samples while the residual mean squares method (RMS-X) allowed 100% of non-PGI samples to be distinguished.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731252PMC
http://dx.doi.org/10.3390/s20236892DOI Listing

Publication Analysis

Top Keywords

predicting sensory
8
dry-cured beef
8
sensory parameters
8
non-pgi samples
8
sensory
6
nir spectroscopy
4
spectroscopy discriminating
4
discriminating predicting
4
sensory profile
4
profile dry-cured
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!