Hot-melt extrusion of photodynamic antimicrobial polymers for prevention of microbial contamination.

J Photochem Photobiol B

School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK. Electronic address:

Published: January 2021

Infectious disease outbreaks within healthcare facilities can exacerbate patient illness and, in some cases, can be fatal. Contaminated surfaces and medical devices can act as a reservoir for transmission of pathogens and have been linked to the rising incidence of healthcare-acquired infections. Antimicrobial surfaces can reduce microbial contamination and transmission and have emerged as a crucial component in healthcare infection control in recent years. The aim of this study was to manufacture antimicrobial polymer surfaces containing the photosensitiser, toluidine blue O (TBO), using hot-melt extrusion (HME). Several concentrations of TBO were combined with a range of medically relevant polymers via HME. TBO-polymer extrudates displayed no significant differences in thermal properties and surface wettability relative to non-loaded polymers. Minimal leaching of TBO from the surface was confirmed through in vitro release studies. Antibacterial activity was observed to vary according to the polymer and concentration of incorporated TBO, with PEBAX® polymers modified with 0.1% w/w TBO demonstrating promising reductions of >99.9% in viable bacterial adherence of a range of common nosocomial pathogens, including Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii and Escherichia coli. This study demonstrates the use of HME as a facile alternative method to common encapsulation strategies for the production of light-activated antimicrobial polymer surfaces. This method can be easily translated to large-scale manufacture and, in addition, the polymers constitute promising antimicrobial base materials for the rapidly growing additive manufacturing industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2020.112098DOI Listing

Publication Analysis

Top Keywords

hot-melt extrusion
8
microbial contamination
8
antimicrobial polymer
8
polymer surfaces
8
antimicrobial
5
polymers
5
tbo
5
extrusion photodynamic
4
photodynamic antimicrobial
4
antimicrobial polymers
4

Similar Publications

3D-Printed Tablets of Nifurtimox: In Vitro and In Vivo Anti- Studies.

Pharmaceutics

January 2025

Institute of Chemistry Rosario, National Council for Scientific and Technical Research (IQUIR-CONICET), Rosario 2000, Argentina.

: Chagas disease is a neglected tropical disease caused by infection with the parasite . Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed for the first time to formulate tablets of nifurtimox by hot melt extrusion coupled with 3D printing as a strategy to increase drug dissolution and the production of tablets with dosage on demand.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.

View Article and Find Full Text PDF

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

Recent developments in pharmacogenetics have emphasised the importance of customised medication, driving interest in technologies like FDM 3D-printing for tailored drug delivery. FDM 3D-printing is a promising technique for the on-demand manufacturing of customised oral dosage forms, providing flexibility in terms of shape and size, dose and drug release profiles. This study investigates the fabrication and characterisation of 3D-printed oral dosage forms using PEO as the primary polymer and PEG 6 K as a plasticiser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!