Toward complete rational control over protein structure and function through computational design.

Curr Opin Struct Biol

Institute for Protein Innovation, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA. Electronic address:

Published: February 2021

The grand challenge of protein design is a general method for producing a polypeptide with arbitrary functionality, conformation, and biochemical properties. To that end, a wide variety of methods have been developed for the improvement of native proteins, the design of ideal proteins de novo, and the redesign of suboptimal proteins with better-performing substructures. These methods employ informatic comparisons of function-structure-sequence relationships as well as knowledge-based evaluation of protein properties to narrow the immense protein sequence search space down to an enumerable and often manually evaluable set of structures that meet specified criteria. While arbitrary manipulation of protein-protein interfaces and molecular catalysis remains an unsolved problem, and no protein shape or behavior manipulation algorithm is universally applicable, the promising results thus far are a strong indicator that a general approach to the arbitrary manipulation of polypeptides is within reach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7965241PMC
http://dx.doi.org/10.1016/j.sbi.2020.10.015DOI Listing

Publication Analysis

Top Keywords

arbitrary manipulation
8
protein
5
complete rational
4
rational control
4
control protein
4
protein structure
4
structure function
4
function computational
4
computational design
4
design grand
4

Similar Publications

Materials with full and fractional skyrmions are important for fundamental studies and can be applied as information carriers for applications in spintronics or skyrmionics. However, creation, direct optical observation and manipulation of different skyrmion textures remain challenging. Besides, how the transformation of skyrmion textures directs the dynamics of colloids is not well understood.

View Article and Find Full Text PDF

In this paper, we present a global reactive motion planning framework designed for robotic manipulators navigating in complex dynamic environments. Utilizing local minima-free circular fields, our methodology generates reactive control commands while also leveraging global environmental information from arbitrary configuration space motion planners to identify promising trajectories around obstacles. Furthermore, we extend the virtual agents framework introduced in Becker et al.

View Article and Find Full Text PDF

Intracortical microstimulation (ICMS) of somatosensory cortex evokes tactile sensations whose properties can be systematically manipulated by varying stimulation parameters. However, ICMS currently provides an imperfect sense of touch, limiting manual dexterity and tactile experience. Leveraging our understanding of how tactile features are encoded in the primary somatosensory cortex (S1), we sought to inform individuals with paralysis about local geometry and apparent motion of objects on their skin.

View Article and Find Full Text PDF

How are arbitrary sequences of verbal information retained and manipulated in working memory? Increasing evidence suggests that serial order in verbal WM is spatially coded and that spatial attention is involved in access and retrieval. Based on the idea that brain areas controlling spatial attention are also involved in oculomotor control, we used eye tracking to reveal how the spatial structure of serial order information is accessed in verbal working memory. In two experiments, participants memorized a sequence of auditory words in the correct order.

View Article and Find Full Text PDF

How do people predict the outcome of an event from a set of possible outcomes? One might expect people to predict whichever outcome they believe to be most likely to arise. However, we document a robust disconnect between what people predict and what they believe to be most likely. This disconnect arises because people consider not only relative likelihood but also absolute likelihood when predicting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!