: Epilepsy is a network-level neurological disorder characterized by unprovoked recurrent seizures and associated comorbidities. Aberrant activity and localization of histone deacetylases (HDACs) have been reported in epilepsy and HDAC inhibitors (HDACi) have been used for therapeutic purposes. Several non-histone targets of HDACs have been recognized whose reversible acetylation can modulate protein functions and can contribute to disease pathology. : This review provides an overview of HDACs in epilepsy and reflects its action on non-histone substrates involved in the pathogenesis of epilepsy and explores the effectiveness of HDACi as anti-epileptic drugs (AEDs). It also covers the efforts undertaken to target the interaction of HDACs with their substrates. We have further discussed non-deacetylase activity possessed by specific HDACs that might be essential in unraveling the molecular mechanism underlying the disease. For this purpose, relevant literature from 1996 to 2020 was derived from PubMed. : The interaction of HDACs and their non-histone substrates can serve as a promising therapeutic target for epilepsy. Pan-HDACi offers limited benefits to the epileptic patients. Thus, identification of novel targets of HDACs contributing to the disease and designing inhibitors targeting these complexes would be more effective and holds a greater potential as an anti-epileptogenic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14728222.2021.1860016DOI Listing

Publication Analysis

Top Keywords

non-histone substrates
12
histone deacetylases
8
targets hdacs
8
interaction hdacs
8
hdacs
7
epilepsy
6
non-histone
4
substrates histone
4
deacetylases potential
4
potential therapeutic
4

Similar Publications

The cat eye syndrome chromosome region candidate 2 (CECR2) protein is an epigenetic regulator involved in chromatin remodeling and transcriptional control. The CECR2 bromodomain (CECR2-BRD) plays a pivotal role in directing the activity of CECR2 through its capacity to recognize and bind acetylated lysine residues on histone proteins. This study elucidates the binding specificity and structural mechanisms of CECR2-BRD interactions with both histone and non-histone ligands, employing techniques such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and a high-throughput peptide assay.

View Article and Find Full Text PDF

Lactate, once viewed as a byproduct of glycolysis and a metabolic "waste", is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes.

View Article and Find Full Text PDF

Lysine and arginine methylation of transcription factors.

Cell Mol Life Sci

December 2024

Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.

Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation.

View Article and Find Full Text PDF

Lactate exhibits various biological functions, including the mediation of histone and non-histone lactylation to regulate gene transcription, influencing the activity of T lymphocytes, NK cells, and macrophages in immune suppression, activating G protein-coupled receptor 81 for signal transduction, and serving as an energy substrate. The mA modification represents the most prevalent post-transcriptional epigenetic alteration. It is regulated by mA-related regulatory enzymes (including methyltransferases, demethylases, and recognition proteins) that control the transcription, splicing, stability, and translation of downstream target RNAs.

View Article and Find Full Text PDF

Chromatin organization, which is under the control of histone deacetylases (HDACs), is frequently deregulated in cancer cells. Amongst HDACs, HDAC8 plays an oncogenic role in different neoplasias by acting on both histone and non-histone substrates. Promising anti-cancer strategies have exploited dual-targeting drugs that inhibit both HDAC8 and tubulin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!