Therapeutic development and current uses of BCL-2 inhibition.

Hematology Am Soc Hematol Educ Program

Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia; and Victorian Comprehensive Cancer Centre, Melbourne, Australia.

Published: December 2020

B-cell lymphoma 2 (BCL2) is a key protein regulator of apoptosis. It is variably highly expressed in many hematological malignancies, providing protection from cell death induced by oncogenic and external stresses. Venetoclax is the first selective BCL2 inhibitor, and the first of a new class of anticancer drug (BH3-mimetics) to be approved for routine clinical practice, currently in chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). To help understand the potential and limitations of this therapy, this brief review will touch on the history of development of venetoclax, dissect its mechanism of action, and summarize critical evidence for its approved use in the management of patients with CLL and AML. It will also consider recent data on mechanisms of resistance and explore concepts pertinent to its future development based on key lessons learned to date.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727569PMC
http://dx.doi.org/10.1182/hematology.2020000154DOI Listing

Publication Analysis

Top Keywords

therapeutic development
4
development current
4
current bcl-2
4
bcl-2 inhibition
4
inhibition b-cell
4
b-cell lymphoma
4
lymphoma bcl2
4
bcl2 key
4
key protein
4
protein regulator
4

Similar Publications

The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.

View Article and Find Full Text PDF

Roads to remission: evolving treatment concepts in type 2 inflammatory diseases.

EClinicalMedicine

February 2025

Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany.

Unlabelled: Non-communicable diseases (NCDs) characterised by type 2 inflammation, including asthma, allergic rhinitis, chronic rhinosinusitis with nasal polyps, atopic dermatitis, food allergies and eosinophilic esophagitis, are increasing in prevalence worldwide. Currently, there is a major paradigm shift in the management of these diseases, towards the concept of disease modification and the treatment goal remission, regardless of severity and age. Remission as a treatment goal in chronic inflammatory NCDs was first introduced in rheumatoid arthritis, and then adopted in other non-type 2 inflammatory diseases.

View Article and Find Full Text PDF

Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities.

J Inflamm Res

January 2025

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.

View Article and Find Full Text PDF

Cuproptosis Cell Death Molecular Events and Pathways to Liver Disease.

J Inflamm Res

January 2025

Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China.

Chronic liver disease ranks as the 11th leading cause of death worldwide, while hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality, representing a substantial risk to public health. Over the past few decades, the global landscape of chronic liver diseases, including hepatitis, metabolic dysfunction-associated steatotic liver disease (MASLD), liver fibrosis, and HCC, has undergone substantial changes. Copper, a vital trace element for human health, is predominantly regulated by the liver.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!