During the COVID-19 pandemic, an ultraportable ultrasound smart probe has proven to be one of the few practical diagnostic and monitoring tools for doctors who are fully covered with personal protective equipment. The real-time, safety, ease of sanitization, and ultraportability features of an ultrasound smart probe make it extremely suitable for diagnosing COVID-19. In this article, we discuss the implementation of a smart probe designed according to the classic architecture of ultrasound scanners. The design balanced both performance and power consumption. This programmable platform for an ultrasound smart probe supports a 64-channel full digital beamformer. The platform's size is smaller than 10 cm ×5 cm. It achieves a 60-dBFS signal-to-noise ratio (SNR) and an average power consumption of ~4 W with 80% power efficiency. The platform is capable of achieving triplex B-mode, M-mode, color, pulsed-wave Doppler mode imaging in real time. The hardware design files are available for researchers and engineers for further study, improvement or rapid commercialization of ultrasound smart probes to fight COVID-19.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2020.3042472 | DOI Listing |
ACS Sens
January 2025
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper.
View Article and Find Full Text PDFAnal Chem
January 2025
Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:
Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, Peking University First Hospital, Beijing, 100034, China.
Objectives: To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.
Methods: A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance.
J Med Chem
January 2025
Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!