A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exposure to lead, mercury, styrene, and toluene and hearing impairment: evaluation of dose-response relationships, regulations, and controls. | LitMetric

Exposure to lead, mercury, styrene, and toluene and hearing impairment: evaluation of dose-response relationships, regulations, and controls.

J Occup Environ Hyg

Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.

Published: April 2021

The risk of hearing loss from exposure to ototoxic chemicals is not reflected in occupational exposure limits and most jurisdictions. The aims of this research were to investigate dose-response relationships between exposure to lead, mercury, toluene, and styrene and hearing impairment based on current epidemiological evidence, conduct cross-jurisdictional comparisons, and investigate control measures for exposure to ototoxic chemicals. Ovid Medline and Ovid Embase databases were used to find relevant publications. A total of 86 epidemiological studies met the eligibility criteria for final evaluation. When significant associations between exposure and outcome were identified, exposure levels were evaluated to determine whether No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) could be identified. Cross-jurisdictional comparisons included the U.K., U.S., Canada, and Australia occupational health and safety legislations. The majority of lead (75%), styrene (74%), and toluene (77%) studies showed significantly increased risks of hearing loss from exposure to these substances, although numerous studies on toluene (70%) and styrene (16%) compared auditory function between "solvent mixture" or "noise and solvent mixture" exposed groups and controls and not necessarily on groups exposed to a single agent. Based on five studies, blood lead ranges of 1-1.99 μg/dL to 2.148-2.822 μg/dL were identified as NOAELs while blood lead levels of 2 μg/dL up to 2.823-26.507 μg/dL were identified as LOAELs for hearing loss. Except for general duty clauses, the U.S., Canadian, and Australian jurisdictions have set no enforceable regulations specific to ototoxic chemical exposures. A biological exposure index of 2 μg/dL is recommended for prevention of hearing impairment from lead exposure. Based on Safe Work Australia, noise exposure limits may be reduced to 80 dB(A) for 8 hr. Other recommendations include performing audiometric testing and controlling exposure through all routes of entry.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15459624.2020.1842428DOI Listing

Publication Analysis

Top Keywords

exposure
12
hearing impairment
12
hearing loss
12
exposure lead
8
lead mercury
8
dose-response relationships
8
loss exposure
8
exposure ototoxic
8
ototoxic chemicals
8
exposure limits
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!