Squeezed states of light reduce the signal-normalized photon counting noise of measurements without increasing the light power and enable fundamental research on quantum entanglement in hybrid systems of light and matter. Squeezed states of light have high potential to complement cryogenically cooled sensors, whose thermal noise is suppressed below the quantum noise of light by operation at low temperature. They allow us to reduce the optical heat load on cooled devices by lowering the light power without losing measurement precision. Here, we demonstrate the squeezed-light position sensing of a cryo-cooled micromechanical membrane. The sensing precision is improved by up to 4.8 dB below photon counting noise, limited by optical loss, at a membrane temperature of about 20 K. We prove that realizing a high interference contrast in a cryogenic Michelson interferometer is feasible. Our setup is the first conceptual demonstration towards the envisioned European gravitational-wave detector, the "Einstein telescope," which is planned to use squeezed states of light together with cryo-cooled mirror test masses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.213601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!