Multidimensional Hydrogen Tunneling in Supported Molecular Switches: The Role of Surface Interactions.

Phys Rev Lett

Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.

Published: November 2020

The nuclear tunneling crossover temperature (T_{c}) of hydrogen transfer reactions in supported molecular-switch architectures can lie close to room temperature. This calls for the inclusion of nuclear quantum effects (NQEs) in the calculation of reaction rates even at high temperatures. However, computations of NQEs relying on standard parametrized dimensionality-reduced models quickly become inadequate in these environments. In this Letter, we study the paradigmatic molecular switch based on porphycene molecules adsorbed on metallic surfaces with full-dimensional calculations that combine density-functional theory for the electrons with the semiclassical ring-polymer instanton approximation for the nuclei. We show that the double intramolecular hydrogen transfer (DHT) rate can be enhanced by orders of magnitude due to surface fluctuations in the deep-tunneling regime. We also explain the origin of an Arrhenius temperature dependence of the rate below T_{c} and why this dependence differs at different surfaces. We propose a simple model to rationalize the temperature dependence of DHT rates spanning diverse fcc [110] surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.216001DOI Listing

Publication Analysis

Top Keywords

hydrogen transfer
8
temperature dependence
8
multidimensional hydrogen
4
hydrogen tunneling
4
tunneling supported
4
supported molecular
4
molecular switches
4
switches role
4
role surface
4
surface interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!