Spreading phenomena essentially underlie the dynamics of various natural and technological networked systems, yet how spatiotemporal propagation patterns emerge from such networks remains largely unknown. Here we propose a novel approach that reveals universal features determining the spreading dynamics in diffusively coupled networks and disentangles them from factors that are system specific. In particular, we first analytically identify a purely topological factor encoding the interaction structure and strength, and second, numerically estimate a master function characterizing the universal scaling of the perturbation arrival times across topologically different networks. The proposed approach thereby provides intuitive insights into complex propagation patterns as well as accurate predictions for the perturbation arrival times. The approach readily generalizes to a wide range of networked systems with diffusive couplings and may contribute to assess the risks of transient influences of ubiquitous perturbations in real-world systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.218301 | DOI Listing |
Neuroinformatics
January 2025
Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400010, China.
Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.
View Article and Find Full Text PDFEpilepsia
January 2025
National Center for Epilepsy, Division of Clinical Neuroscience, full member of European Reference Network EpiCARE, Oslo University Hospital, Oslo, Norway.
Objective: This study was undertaken to describe incidence and distribution of seizures, etiologies, and epilepsy syndromes in the general child and youth population, using the current International League Against Epilepsy (ILAE) classifications.
Methods: The study platform is the Norwegian Mother, Father, and Child Cohort Study (MoBa). Epilepsy cases were identified through registry linkages facilitated by Norway's universal health care system and mandatory reporting to the Norwegian Patient Registry.
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFCan Assoc Radiol J
January 2025
Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!