The impact of vasopressor and sedative drugs on cerebrovascular reactivity in traumatic brain injury (TBI) remains unclear. The aim of this study was to evaluate the impact of changes of doses of commonly administered sedation (i.e., propofol, fentanyl, and ketamine) and vasopressor agents (i.e., norepinephrine [NE], phenylephrine [PE], and vasopressin[VSP]) on cerebrovascular reactivity and compensatory reserve in patients with moderate/severe TBI. Using the Winnipeg Acute TBI Database, we identified 38 patients with more than 1000 distinct changes of infusion rates and more than 500 h of paired drug infusion/physiology data. Cerebrovascular reactivity was assessed using pressure reactivity index (PRx) and cerebral compensatory reserve was assessed using RAP (the correlation [R] between pulse amplitude of intracranial pressure [ICP; A] and ICP [P]). We evaluated the data in two phases. First, we assessed the relationship between mean hourly dose of medication and its relation to both mean hourly index values, and time spent above a given index threshold. Second, we evaluated time-series data for each individual dose change per medication, assessing for a statistically significant change in PRx and RAP metrics. The results of the analysis confirmed that, overall, the mean hourly dose of sedative (propofol, fentanyl, and ketamine) and vasopressor (NE, PE, and VSP) agents does not impact hourly cerebrovascular reactivity or compensatory reserve measures. Similarly, incremental dose changes in these medications in general do not lead to significant changes in cerebrovascular reactivity or compensatory reserve. For propofol with incremental dose increases, in situations where PRx is intact (i.e., PRx <0 prior), a statistically significant increase in PRx was seen. However, this may not indicate deteriorating cerebrovascular reactivity as the final PRx (∼0.05) may still be considered to be intact cerebrovascular reactivity. As such, this finding with regards to propofol remains "weak." This study indicates that commonly administered sedative and vasopressor agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity or compensatory reserve in TBI. These results should be considered preliminary, requiring further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703494PMC
http://dx.doi.org/10.1089/neur.2020.0028DOI Listing

Publication Analysis

Top Keywords

cerebrovascular reactivity
24
compensatory reserve
20
reactivity compensatory
16
impact vasopressor
8
vasopressor sedative
8
traumatic brain
8
brain injury
8
propofol fentanyl
8
fentanyl ketamine
8
ketamine vasopressor
8

Similar Publications

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Miami, Coral Gables, FL, USA.

Background: Cerebral blood flow is decreased in mouse models and patients of Alzheimer's disease (AD). We identified that about 2% of cortical capillaries in the APP/PS1 mouse model of AD had stalled blood flow due to neutrophils obstructing capillaries and contributing to vascular inflammation. Neutrophils are more reactive in AD.

View Article and Find Full Text PDF

Background: Many survivors of lung injury, including those with bacterial pneumonia and COVID-19, suffer from incident dementia. Patients who have had pneumonia and other infections are at a higher risk for developing Alzheimer's disease and related dementias (ADRD) (Chu et al., BBI, 2022, Sipila et al.

View Article and Find Full Text PDF

Background: APOE4 carriers exhibit cerebrovascular dysfunction which may contribute to the development of cognitive decline and dementia; however, the mechanisms underlying this pathophysiology remain unknown. Impaired cerebrovascular reactivity (CVR) may be associated with vascular injury, inflammation, and endothelial dysfunction. To examine whether these processes may be involved in CVR deficits in APOE4 carriers, we explored whether plasma levels of vascular injury markers indicative of inflammation and endothelial dysfunction are associated with impaired CVR to hypercapnia and hypocapnia in older APOE4 carriers.

View Article and Find Full Text PDF

Background: Optimal cerebral blood flow is crucial to maintaining cognitive function. Cerebrovascular reactivity (CVR) is a dynamic measure of cerebrovascular function which represents the ability of cerebral blood vessels to regulate blood flow in response to vasoactive stimuli. Prior studies have demonstrated an association between impaired CVR and cognitive function in cerebrovascular and neurodegenerative conditions, including cerebral amyloid angiopathy and Alzheimer disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!