Klotho gene improves oxidative stress injury after myocardial infarction.

Exp Ther Med

Department of Internal Medicine-Cardiovascular, Guangzhou 12th People's Hospital, Guangzhou, Guangdong 510620, P.R. China.

Published: January 2021

The aim of the present study was to investigate the effects and mechanisms of the Klotho gene in oxidative stress injury after myocardial infarction. Sprague-Dawley rats were divided into five groups (sham, model, pDC316, LY294002, and pDC316-Klotho). Subsequently, the superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) concentrations were measured in myocardial tissues. Additionally, pathological differences among the groups were evaluated using hematoxylin and eosin and Masson's trichrome staining. Apoptosis was assayed by terminal deoxynucleotidyl transferase 2'-deoxyuridine-5'-triphosphate nick end-labeling assay, evaluated Klotho protein expression by immunohistochemical assay, and assessed Nrf 2 and ARE protein expressions using western blotting assay. As compared with in the sham group, the SOD, MDA, and GSH concentrations were significantly deteriorated (P<0.001, respectively); cardiomyocyte apoptosis index values were significantly increased (P<0.001); Klotho protein expression was significantly depressed; and Nrf-2 and ARE protein expressions were significantly (P<0.001, respectively) in the model and pDC316 groups. However, with Klotho supplementation by pDC316 transfection, as compared with in the model group, the SOD, MDA, and GSH concentrations were significantly improved (P<0.001, respectively); the cardiomyocyte apoptosis index values were significantly suppressed (P<0.001); and the pathology was improved. Further, the Klotho protein expression of the pDC316-Klotho group was significantly upregulated and the Nrf-2 and ARE proteins expressions of the LY294002 and pDC316-Klotho groups were significantly suppressed. Klotho overexpression improved findings of oxidative stress injury after myocardial infarction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706392PMC
http://dx.doi.org/10.3892/etm.2020.9484DOI Listing

Publication Analysis

Top Keywords

klotho gene
8
oxidative stress
8
stress injury
8
injury myocardial
8
myocardial infarction
8
gene improves
4
improves oxidative
4
infarction aim
4
aim study
4
study investigate
4

Similar Publications

Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells.

Int Immunopharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.

View Article and Find Full Text PDF

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

Gliomas are the most common and lethal forms of malignant brain tumors. We attempted to identify the role of the aging-suppressor gene and Klotho protein in the immunopathogenesis of gliomas. We examined genetic variants by PCR-RFLP and measured serum Klotho levels using the ELISA method.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Background: Among numerous genes that have been a focus of equine genetic research, the (Klotho) and (Alpha-actinin-3) genes stand out due to their significant roles in muscle function and overall health, as well as performance ability. Previous studies on Arabian horses and other mammalians have shown that both and occur in different isoforms that seem to have different roles in metabolism. The main purpose of this present study was to describe different isoforms (, , , , , ) expression levels affected by the endurance effort in Arabian horses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!