An enriched environment (EE) has been demonstrated to improve functional recovery in animal models of ischaemic stroke through enhancing vascular endothelial growth factor- (VEGF-) mediated neuroprotection accompanied by angiogenesis in the ischaemic hemisphere. Whether EEs also promote VEGF-mediated neuroprotection and angiogenesis in the contralateral hemisphere remains unclear. Here, we explored the effect of EEs on VEGF expression and angiogenesis within the contralateral cerebral cortex in a rat middle cerebral artery occlusion/reperfusion (MCAO/r) model. We assessed the expression levels of platelet endothelial cell adhesion molecule-1 (CD31), VEGF, and endothelial nitric oxide synthase (eNOS) in the whole contralateral cerebral cortex using Western blotting assay but did not find an increase in the expression of CD31, VEGF, or eNOS in MCAO/r rats housed in EEs, which suggested that EEs did not enhance the overall expression of VEGF and eNOS or angiogenesis in the entire contralateral cortex. We further analysed the local effect of EEs by immunohistochemistry and found that in and around the bilateral cingulum in MCAO/r rats housed in EEs, haematopoietic progenitor cell antigen- (CD34-) positive endothelial progenitor cells were significantly increased compared with those of rats housed in standard cages (SCs). Further experiments showed that EEs increased neuronal VEGF expression surrounding the cingulum in MCAO/r rats and robustly upregulated eNOS expression. These results revealed that EEs enhanced angiogenesis, VEGF expression, and activation of the VEGF-eNOS pathway in and/or around the cingulum in MCAO/r rats, which were involved in the functional recovery of MCAO/r rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676980PMC
http://dx.doi.org/10.1155/2020/8840319DOI Listing

Publication Analysis

Top Keywords

mcao/r rats
20
vegf expression
12
rats housed
12
cingulum mcao/r
12
enriched environment
8
surrounding cingulum
8
ischaemic stroke
8
functional recovery
8
ees
8
angiogenesis contralateral
8

Similar Publications

Ginkgolide B binds to GPX4 and FSP1 to alleviate cerebral ischemia/reperfusion injury in rats.

Toxicol Appl Pharmacol

January 2025

Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China. Electronic address:

Ischemia/reperfusion (I/R) injury can increase the anomalous permeability of the blood-brain barrier and the risk of hemorrhagic conversion. Ginkgolide B (Gin B) has been recognized for its neuroprotective properties in stroke treatment. This study aimed to analyze the association of Gin B with GPX4 and FSP1 in cerebral I/R injury treatment.

View Article and Find Full Text PDF

Toona sinensis fruit polyphenols alleviate cerebral ischemia-reperfusion injury in rats by inhibiting MAPK signaling pathways and NLRP3 inflammasome/pyroptosis.

J Ethnopharmacol

January 2025

Department of Pharmacology, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, PR China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China. Electronic address:

Ethnopharmacological Relevance: Toona sinensis fruit polyphenols (TSFP) are polyphenols that have been separated and extracted from mature Toona sinensis fruits. TSFP anti-inflammatory and neuroprotective properties have demonstrated promise. However, the underlying mechanisms require more elucidation.

View Article and Find Full Text PDF

Objectives: Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on cerebral ischemia/reperfusion injury from the perspective of exosomal miR-124 and apoptosis.

View Article and Find Full Text PDF

Background: Electroacupuncture (EA) and trigonelline (TG) have been reported to be beneficial in alleviating cerebral ischemia/reperfusion injury (CIRI). However, the synergistic effects of EA and TG in CIRI and the underlying mechanism have not been demonstrated.

Methods: Rats were subjected to middle cerebral artery occlusion (MCAO) surgery and reperfusion (MCAO/R) to establish a CIRI model.

View Article and Find Full Text PDF

Na-K-ATPase/GLT-1 interaction participates in EGCG protection against cerebral ischemia-reperfusion injury in rats.

Phytomedicine

January 2025

Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China. Electronic address:

Background: In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na-K-ATPase (NKA)-induced ion concentration gradient differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!