Dy doped β-CaPO phosphor has been synthesized using wet chemical method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis confirmed the formation of β-CaPO:Dy nano-phosphors. However, photoluminescence (PL) study was carried out to confirm the presence of dopant ion in the host matrix of β-CaPO:Dy material. Thermoluminescence (TL) glow curves of β-CaPO were recorded for different concentrations of Dy after exposure to various fluences of C ion beam (75 meV). TL sensitivity of β-CaPO:Dy (0.1 mol%) phosphor was 3.79 times more than commercially available CaSO:Dy. TRIM code based on the Monte Carlo simulation was used to calculate the absorbed doses, ion range and main energy loss. Glow curve de-convolution (GCD) method was used to determine the number of TL peaks and their trapping parameters. The wide linear response of β-CaPO nanoparticles along with high stability of TL glow curve makes this nanomaterial a good candidate for C ion beam dosimetry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713374PMC
http://dx.doi.org/10.1038/s41598-020-78365-4DOI Listing

Publication Analysis

Top Keywords

ion beam
12
electron microscopy
8
glow curve
8
ion
5
facile synthesis
4
synthesis thermoluminescence
4
thermoluminescence properties
4
properties nano
4
nano bio-ceramic
4
β-capody
4

Similar Publications

Single Rare-Earth Ion Doped Tin-Oxo Nanocluster Photoresists for High-Resolution Extreme Ultraviolet Lithography.

Nano Lett

January 2025

Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.

Rare-earth (RE) metals are known as industrial vitamins and show significant regulatory effects in many fields. In this work, we first demonstrated that the vitamin effect of RE metals can also be applied to extreme ultraviolet (EUV) lithography. Using a SnRE oxo cluster as the universal platform, different individual RE metal ions were successfully doped to obtain a series of isomorphic heterometallic clusters (RE = Y, Sm, Eu, Ho, Er).

View Article and Find Full Text PDF

Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures.

Polymers (Basel)

January 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.

View Article and Find Full Text PDF

This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!