To provide an appropriate tillage fertilization model for improving N utilization efficiency and increasing production, the field experiments were conducted to study the effects on root distributions and N utilization efficiency of summer maize involving different straw mulching modes combined with N fertilization. No (N0), low (N1), medium (N2), and high (N3) levels of N fertilization were incorporated into soil combined with the surface coverage straw (Treatment B) and the deeply buried straw (Treatment S). The traditional cultivation was used as control treatment. The results shown that treatments S had significantly promoted deep root growth, and the root length density (RLD) increased with increases in N application rate. SN2 and SN3 treatments' average RLD were significantly increased by 67.5% and 68.1% in the greater than 40 cm soil layers. While the Treatment B had significantly increased the RLD in 0 -30 cm soil layers only. With increases in N application rate, the effect on summer maize yields increase under Treatment B were not significantly, and only BN3 increased by 0.4%, while under Treatments S were found to first increase, and then decrease. The apparent recovery efficiency of applied N, N uptake and summer maize yield of SN2 had increased by 66.8%, 20.4%, and 9.3%. Therefore the rational tillage fertilization model was deeply buried straw combined with medium N fertilizer in Hetao Irrigation District.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712912 | PMC |
http://dx.doi.org/10.1038/s41598-020-78112-9 | DOI Listing |
Data Brief
February 2025
Institute of Agricultural Sciences, Spanish National Research Council (ICA-CSIC), Serrano 115b, 28006 Madrid, Spain.
Identifying weed species at early-growth stages is critical for precision agriculture. Accurate classification at the species-level enables targeted control measures, significantly reducing pesticide use. This paper presents a dataset of RGB images captured with a Sony ILCE-6300L camera mounted on an unmanned aerial vehicle (UAV) flying at an altitude of 11 m above ground level.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
To analyze the emission characteristics of VOCs from pesticide use sources in Beijing, the distribution of commonly used pesticides and dosage forms in Beijing was obtained through on-site research, and the VOC content of pesticides in different dosage forms was examined using laboratory testing methods. The emission factors of pesticide VOCs for localized dosage forms in Beijing were established, an inventory of pesticide use source VOCs was compiled, and the spatial and temporal distribution characteristics of pesticide use source VOCs were analyzed. The results indicated that ① Pesticide dosage forms were the main factors affecting the emission of VOCs from pesticides, and when accounting for VOC emissions from pesticide sources, it is necessary to know the types of pesticides and active ingredients in the target area and obtain information on pesticide dosage forms simultaneously.
View Article and Find Full Text PDFEnviron Microbiome
December 2024
Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia.
Background: Herbicides are integral to agricultural weed management but can adversely affect non-target organisms, soil health, and microbiome. We investigated the effects of herbicides on the total soil bacterial community composition using 16S rRNA gene amplicon community profiling. Further, we aimed to identify herbicide-tolerant bacteria with plant growth-promoting (PGP) capabilities as a mitigative strategy for these negative effects, thereby promoting sustainable agricultural practices.
View Article and Find Full Text PDFTransl Anim Sci
November 2024
Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA.
Experiments were conducted during the summers of 2021 and 2022 to evaluate the effects of feeding strategy and shade on growth performance, animal comfort, water usage, apparent diet digestibility, and ruminal fermentation characteristics of growing heifers during periods of heat stress. In Exp. 1, 852 heifers (initial body weight [BW] = 251 ± 13 kg) were assigned to one of 4 treatments: high-energy diet limit-fed at 2.
View Article and Find Full Text PDFFungal Biol
December 2024
Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy.
Maize is a worldwide crop yet can be associated with mycotoxigenic fungi, much investigated in humid tropical and cooler, wet temperate regions. However, in hot, arid/semi-arid regions data on their occurrence are poor. In this paper, we focused on interactions between maize and Fusarium fungal species in Tunisia, which has a Mediterranean climate, with hot, dry summers and milder, damper winters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!