A microscopic viewpoint of structure and dipolar configurations in hybrid organic-inorganic perovskites is crucial to understanding their stability and phase transitions. The necessity of incorporating dispersion interactions in the state-of-the-art density functional theory for the [Formula: see text] perovskite (MAPI) is demonstrated in this work. Some of the vdW methods were selected to evaluate the corresponding energetics properties of the cubic MAPI with various azimuthally rotated MA organic cation orientations. The highest energy barrier obtained from PBEsol reaches 18.6 meV/MA-ion, which is equivalent to 216 K, the temperature above which the MA cations randomly reorient. Energy profiles calculated by vdW incorporated functionals, on the other hand, exhibit various distinct patterns. The well-developed vdW-DF-cx functional was selected, thanks to its competence, to evaluate the total energies of different MA dipolar configurations in [Formula: see text] cubic supercell of MAPI under pressures. The centrosymmetric arrangement of the MA cations that provide zero total dipole moment configuration results in the lowest energy state profiles under pressure, while the non-centrosymmetric scheme displays a unique behaviour. Despite being overall unpolarised, the latter calculated with PBEsol leads to a rigid shift of energy from the profile obtained from the dispersive vdW-DF-cx functional. It is noteworthy that the energy profile responsible for the maximum polarised configuration nevertheless takes the second place in total energy under pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713306 | PMC |
http://dx.doi.org/10.1038/s41598-020-77852-y | DOI Listing |
Phys Chem Chem Phys
January 2025
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.
The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA.
The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.
View Article and Find Full Text PDFNat Commun
December 2024
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.
View Article and Find Full Text PDFBioorg Chem
December 2024
CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Alantolactone and isoalantolactone are two isomeric sesquiterpene lactones that were isolated from Innula recemosa. Here, we are used for the semisynthesis of novel isoxazolidine hybrids of alantolactone and isoalantolactone through a two-step process: nitrone synthesis followed by nitrone 1,3-dipolar cycloaddition. The formation of the cycloadduct was well characterized via modern spectroscopic techniques such as HRMS, H NMR, C NMR, DEPT-90, DEPT-135, and 2D NMR.
View Article and Find Full Text PDFSci Rep
November 2024
Key Laboratory for Humid Subtropical Ecogeographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!