Microfossils are a powerful tool in earth sciences, and they have been widely used for the determination of geological age and in paleoenvironmental studies. However, the identification of fossil species requires considerable time and labor by experts with extensive knowledge and experience. In this study, we successfully automated the acquisition of microfossil data using an artificial intelligence system that employs a computer-controlled microscope and deep learning methods. The system was used to calculate changes in the relative abundance (%) of Cycladophora davisiana, a siliceous microfossil species (Radiolaria) that is widely used as a stratigraphic tool in studies on Pleistocene sediments in the Southern Ocean. The estimates obtained using this system were consistent with the results obtained by a human expert (< ± 3.2%). In terms of efficiency, the developed system was capable of performing the classification tasks approximately three times faster than a human expert performing the same task.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713231 | PMC |
http://dx.doi.org/10.1038/s41598-020-77812-6 | DOI Listing |
Geobiology
December 2024
Dipartimento di Scienze Della Terra, Università Degli Studi di Torino, Torino, Italy.
Due to their fast precipitation rate, sulfate evaporites represent excellent repositories of past life on Earth and potentially on other solid planets. Nevertheless, the preservation potential of biogenic remains can be compromised by extremely fast early diagenetic processes. The upper Miocene, gypsum-bearing sedimentary successions of the Mediterranean region, that formed ca.
View Article and Find Full Text PDFGeobiology
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, California, USA.
The majority of large iron formations (IFs) were deposited leading up to Earth's great oxidation episode (GOE). Following the GOE, IF deposition decreased for almost 500 Myr. Subsequently, around 1.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Systems Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Geobiology
October 2024
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
Silicified peritidal carbonates of the Tonian Draken Formation, Spitsbergen, contain highly diverse and well-preserved microfossil assemblages dominated by filamentous microbial mats, but also including diverse benthic and/or allochthonous (possibly planktonic) microorganisms. Here, we characterize eight morphospecies in focused ion beam (FIB) ultrathin sections using transmission electron microscopy (TEM) and X-ray absorption near-edge structure (XANES) spectromicroscopy. Raman and XANES spectroscopies show the highly aromatic molecular structure of preserved organic matter.
View Article and Find Full Text PDFAstrobiology
July 2024
ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France.
Understanding the nature and preservation of microbial traces in extreme environments is crucial for reconstructing Earth's early biosphere and for the search for life on other planets or moons. At Rio Tinto, southwestern Spain, ferric oxide and sulfate deposits similar to those discovered at Meridiani Planum, Mars, entomb a diversity of fossilized organisms, despite chemical conditions commonly thought to be challenging for life and fossil preservation. Investigating this unique fossil microbiota can elucidate ancient extremophile communities and the preservation of biosignatures in acidic environments on Earth and, potentially, Mars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!