A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alerting on mortality among patients discharged from the emergency department: a machine learning model. | LitMetric

Objectives: Physicians continuously make tough decisions when discharging patients. Alerting on poor outcomes may help in this decision. This study evaluates a machine learning model for predicting 30-day mortality in emergency department (ED) discharged patients.

Methods: We retrospectively analysed visits of adult patients discharged from a single ED (1/2014-12/2018). Data included demographics, evaluation and treatment in the ED, and discharge diagnosis. The data comprised of both structured and free-text fields. A gradient boosting model was trained to predict mortality within 30 days of release from the ED. The model was trained on data from the years 2014-2017 and validated on data from the year 2018. In order to reduce potential end-of-life bias, a subgroup analysis was performed for non-oncological patients.

Results: Overall, 363 635 ED visits of discharged patients were analysed. The 30-day mortality rate was 0.8%. A majority of the mortality cases (65.3%) had a known oncological disease. The model yielded an area under the curve (AUC) of 0.97 (95% CI 0.96 to 0.97) for predicting 30-day mortality. For a sensitivity of 84% (95% CI 0.81 to 0.86), this model had a false positive rate of 1:20. For patients without a known malignancy, the model yielded an AUC of 0.94 (95% CI 0.92 to 0.95).

Conclusions: Although not frequent, patients may die following ED discharge. Machine learning-based tools may help ED physicians identify patients at risk. An optimised decision for hospitalisation or palliative management may improve patient care and system resource allocation.

Download full-text PDF

Source
http://dx.doi.org/10.1136/postgradmedj-2020-138899DOI Listing

Publication Analysis

Top Keywords

30-day mortality
12
patients discharged
8
emergency department
8
machine learning
8
learning model
8
predicting 30-day
8
model trained
8
model yielded
8
patients
7
model
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!