A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. | LitMetric

AI Article Synopsis

  • Systemic lupus erythematosus (SLE) is an autoimmune disease linked to nearly 100 genetic loci, but their exact role in SLE heritability remains unclear, prompting researchers to conduct a comprehensive study in East Asian populations.
  • The research included genotyping over 10,000 SLE cases and 180,000 controls, resulting in the identification of 113 genetic regions with 46 new significant loci and the discovery of 233 association signals indicating genetic diversity.
  • The study highlighted 110 putative causal variants and provided insights into genetic correlations with other proteins, emphasizing the potential of large-scale meta-analysis for advancing the understanding of SLE's genetic basis.

Article Abstract

Objective: Systemic lupus erythematosus (SLE), an autoimmune disorder, has been associated with nearly 100 susceptibility loci. Nevertheless, these loci only partially explain SLE heritability and their putative causal variants are rarely prioritised, which make challenging to elucidate disease biology. To detect new SLE loci and causal variants, we performed the largest genome-wide meta-analysis for SLE in East Asian populations.

Methods: We newly genotyped 10 029 SLE cases and 180 167 controls and subsequently meta-analysed them jointly with 3348 SLE cases and 14 826 controls from published studies in East Asians. We further applied a Bayesian statistical approach to localise the putative causal variants for SLE associations.

Results: We identified 113 genetic regions including 46 novel loci at genome-wide significance (p<5×10). Conditional analysis detected 233 association signals within these loci, which suggest widespread allelic heterogeneity. We detected genome-wide associations at six new missense variants. Bayesian statistical fine-mapping analysis prioritised the putative causal variants to a small set of variants (95% credible set size ≤10) for 28 association signals. We identified 110 putative causal variants with posterior probabilities ≥0.1 for 57 SLE loci, among which we prioritised 10 most likely putative causal variants (posterior probability ≥0.8). Linkage disequilibrium score regression detected genetic correlations for SLE with albumin/globulin ratio (r=-0.242) and non-albumin protein (r=0.238).

Conclusion: This study reiterates the power of large-scale genome-wide meta-analysis for novel genetic discovery. These findings shed light on genetic and biological understandings of SLE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053352PMC
http://dx.doi.org/10.1136/annrheumdis-2020-219209DOI Listing

Publication Analysis

Top Keywords

causal variants
12
east asians
8
susceptibility loci
8
systemic lupus
8
lupus erythematosus
8
putative causal
8
sle cases
8
sle
7
loci
5
meta-analysis 208370
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!