Tissue-associated microbial detection in cancer using human sequencing data.

BMC Bioinformatics

Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, USA.

Published: December 2020

Cancer is one of the leading causes of morbidity and mortality in the globe. Microbiological infections account for up to 20% of the total global cancer burden. The human microbiota within each organ system is distinct, and their compositional variation and interactions with the human host have been known to attribute detrimental and beneficial effects on tumor progression. With the advent of next generation sequencing (NGS) technologies, data generated from NGS is being used for pathogen detection in cancer. Numerous bioinformatics computational frameworks have been developed to study viral information from host-sequencing data and can be adapted to bacterial studies. This review highlights existing popular computational frameworks that utilize NGS data as input to decipher microbial composition, which output can predict functional compositional differences with clinically relevant applicability in the development of treatment and prevention strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713026PMC
http://dx.doi.org/10.1186/s12859-020-03831-9DOI Listing

Publication Analysis

Top Keywords

detection cancer
8
computational frameworks
8
tissue-associated microbial
4
microbial detection
4
cancer
4
cancer human
4
human sequencing
4
data
4
sequencing data
4
data cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!