Non-evaporable getters (NEGs) are metallic compounds of the IV group, particularly titanium and/or zirconium-based alloys and are usually used as pumps in vacuum technologies since they are able to sorb, by chemical reactions, most of the active gas molecules, with particular efficacy towards hydrogen isotopes. This work suggests an alternative application of these materials to fusion nuclear reactors, where there is the need to recover small amount of tritium from the large helium flow rate composing the primary coolant loop. Starting from the tritium mass balance inside the primary coolant loop, the amount of coolant to be routed inside the coolant purification system (CPS) is identified. Then a feasibility study, based on the bulk getter theory, is presented by considering three different commercial alloys, named ST707, ST101 and ZAO. The results provide the mass, the area and the regeneration parameters of the three different alloys necessary to fulfill the requirements of the CPS unit. By comparing the features of the three alloys, the ZAO material appears the most promising for the proposed application because it requires the lower amount of material and a lower number of regeneration cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731110 | PMC |
http://dx.doi.org/10.3390/molecules25235675 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Small
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic.
This paper summarizes the results of investigations into heterogeneous P23/P91 welds after long-term creep exposure at temperatures of 500, 550 and 600 °C. Two variants of welds were studied: In Weld A, the filler material corresponded to P91 steel, while in Weld B, the chemical composition of the consumable material matched P23 steel. The creep rupture strength values of Weld A exceeded those of Weld B at all testing temperatures.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China.
This work investigated the mechanical and catalytic degradation properties of FeMnCoCr-based high-entropy alloys (HEAs) with diverse compositions and porous structures fabricated via selective laser melting (SLM) additive manufacturing for wastewater treatment applications. The effects of Mn content (0, 30 at%, and 50 at%) and topological structures (gyroid, diamond, and sea urchin-inspired shell) on the compression properties and catalytic efficiency of the FeMnCoCr HEAs were discussed. The results indicated that an increase in the Mn content led to a phase structure transition that optimized mechanical properties and catalytic activities.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Industrial Engineering, University of Trento, 38123 Trento, Italy.
The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!