A Novel Design of a 3D Racetrack Memory Based on Functional Segments in Cylindrical Nanowire Arrays.

Nanomaterials (Basel)

IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto and Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 678, 4169-007 Porto, Portugal.

Published: December 2020

A racetrack memory is a device where the information is stored as magnetic domains (bits) along a nanowire (track). To read and record the information, the bits are moved along the track by current pulses until they reach the reading/writing heads. In particular, 3D racetrack memory devices use arrays of vertically aligned wires (tracks), thus enhancing storage density. In this work, we propose a novel 3D racetrack memory configuration based on functional segments inside cylindrical nanowire arrays. The innovative idea is the integration of the writing element inside the racetrack itself, avoiding the need to implement external writing heads next to the track. The use of selective magnetic segments inside one nanowire allows the creation of writing and storage sections inside the same track, separated by chemical constraints identical to those separating the bits. Using micromagnetic simulations, our study reveals that if the writing section is composed of two segments with different coercivities, one can reverse its magnetization independently from the rest of the memory device by applying an external magnetic field. Spin-polarized current pulses then move the information bits along selected tracks, completing the writing process by pushing the new bit into the storage section of the wire. Finally, we have proven the efficacy of this system inside an array of 7 nanowires, opening the possibility to use this configuration in a 3D racetrack memory device composed of an array of thousands of nanowires produced by low-cost and high-yield template-electrodeposition methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761019PMC
http://dx.doi.org/10.3390/nano10122403DOI Listing

Publication Analysis

Top Keywords

racetrack memory
20
memory device
12
based functional
8
functional segments
8
cylindrical nanowire
8
nanowire arrays
8
current pulses
8
segments inside
8
racetrack
6
memory
6

Similar Publications

Magnetic Domain Wall Energy Landscape Engineering in a Ferrimagnet.

Nano Lett

December 2024

Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.

Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.

View Article and Find Full Text PDF

Magnetic skyrmions, topologically stabilized chiral spin textures in magnetic thin films, have garnered considerable interest due to their efficient manipulation and resulting potential as efficient nanoscale information carriers. One intriguing approach to address the challenge of tuning skyrmion properties involves using chiral molecules. Chiral molecules can locally manipulate magnetic properties by inducing magnetization through spin exchange interactions and by creating spin currents.

View Article and Find Full Text PDF

Quantifying the polar skyrmion motion barrier in an oxide heterostructure.

Nanoscale

December 2024

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Exotic polar topologies such as polar skyrmions have been widely observed in ferroelectric superlattice systems. The dynamic motion of polar skyrmions under external forces holds promise for applications in advanced electronic devices such as race-track memory. Meanwhile, the polar skyrmion motion has proven to be challenging due to the strong skyrmion-skyrmion interaction and a lack of a mechanism similar to the spin-transfer torque.

View Article and Find Full Text PDF

Current-driven motion of magnetic domain walls is one of the key technologies for developing storage class memory devices. Extensive studies have revealed a variety of material systems that exhibit high-speed and/or lower power propagation of the domain walls driven by electric current. However, few studies have assessed the reliability of the operations of the memory technology.

View Article and Find Full Text PDF

The manipulation and detection of mobile domain walls in nanoscopic magnetic wires underlies the development of multibit memories. The studies of such domain walls have focused on macroscopic wires that allow for optical detection by using magneto-optic effects. In this study, we demonstrated the electrical tracking with a spatial resolution of better than 40 nm of multiple mobile domain walls in nanoscopic racetracks, using a set of anomalous Hall detectors integrated into the racetracks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!