Introduction: In this single-center study of 268 acute myeloid leukemia (AML) patients, we have tested if a subset of 4 routinely employed immunophenotypic stem cell-associated markers correlated with the presence of recurrently mutated genes and if the markers were predictive for mutational status.
Methods: Immunophenotypic data from 268 diagnostic AML samples obtained in 2009-2018 were analyzed retrospectively for the antigens CD34, CD117, CD123, and CLEC12A. Correlation between immunophenotypes and mutations was analyzed by Fischer's exact test. Clinical applicability of the markers for predicting mutational status was evaluated by receiver operating characteristics analyses, where an area under the curve (AUC) of at least 0.85 was accepted as clinically relevant.
Results: For a number of genes, the antigen expression differed significantly between mutated and wild-type gene expression. Despite low AUCs, CD123 and CLEC12A correlated with FLT3+NPM1- and FLT3+NPM1+. Three subsets met the AUC requirements (CD34+, CD34+CD117+, and CD34-CD117+) for predicting FLT3-NPM1+ or FLT3+NPM1+.
Conclusion: The value of immunophenotypes as surrogate markers for mutational status in AML seems limited when employing CD123 and CLEC12A in combination with CD34 and CD117. Defining relevant cutoffs for given markers is challenging and hampered by variation between laboratories and patient groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000510504 | DOI Listing |
Blood
December 2024
MSKCC, New York, New York, United States.
Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (r/r) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in r/r AML. Re-directing the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123 or CLEC12A has occasionally yielded morphological leukemia-free states (MLFS) but has so far been marred by threatening myeloablation and early relapses.
View Article and Find Full Text PDFMalays J Pathol
April 2023
Universiti Putra Malaysia, Faculty of Medicine and Health Sciences, Department of Pathology, Selangor, Malaysia.
Introduction: Acute myeloid leukaemia (AML) is a heterogeneous malignant disease with a high degree of treatment failure using chemotherapy. Leukaemia stem cells (LSCs) are CD34+CD38- early progenitors associated with poor prognosis in AML. A unique LSC phenotype that excludes rare normal haematopoietic stem cells (HSC) is still elusive.
View Article and Find Full Text PDFBr J Haematol
May 2022
Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.
In adult acute myeloid leukaemia (AML), immunophenotypic differences enable discrimination of leukaemic stem cells (LSCs) from healthy haematopoietic stem cells (HSCs). However, immunophenotypic stem cell characteristics are less explored in paediatric AML. Employing a 15-colour flow cytometry assay, we analysed the expression of eight aberrant surface markers together with BCL-2 on CD34 CD38 bone marrow stem cells from 38 paediatric AML patients and seven non-leukaemic, age-matched controls.
View Article and Find Full Text PDFJ Immunother Cancer
March 2022
Clinical Collaboration Unit Translational Immunology, University Hospitals Tubingen, Tubingen, Germany.
Background: In lymphoid malignancies, the introduction of chimeric antigen receptor T (CAR-T) cells and bispecific antibodies (bsAbs) has achieved remarkable clinical success. However, such immunotherapeutic strategies are not yet established for acute myeloid leukemia (AML), the most common form of acute leukemia in adults. Common targets in AML such as CD33, CD123, and CLEC12A are highly expressed on both AML blasts and on normal myeloid cells and hematopoietic stem cells (HSCs), thereby raising toxicity concerns.
View Article and Find Full Text PDFCurr Hematol Malig Rep
February 2021
Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA.
Purpose Of Review: The advent of several targeted agents has revolutionized the treatment of acute myeloid leukemia (AML) in recent times; however, majority of patients are still not cured. In the ongoing quest for rationally targeted treatment strategies in AML, scientific endeavors have focused on identifying new antigen targets on the leukemic cells for therapeutic exploitation including strategies to directly deliver toxins into the leukemic blasts as well as strategies that harness host immunity to favorably impact clinical outcomes. Gemtuzumab ozogamicin, a CD33 directed antibody-drug conjugate, has provided the proof of concept for the potential efficacy of monoclonal antibody-based therapies in AML.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!