Novel substituted N-benzyl(oxotriazinoindole) inhibitors of aldose reductase exploiting ALR2 unoccupied interactive pocket.

Bioorg Med Chem

Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; Biomagi, Ltd., Mamateyova 26, 851 04 Bratislava, Slovakia.

Published: January 2021

Recently we have developed novel oxotriazinoindole inhibitors (OTIs) of aldose reductase (ALR2), characterized by high efficacy and selectivity. Herein we describe novel OTI derivatives design of which is based on implementation of additional intermolecular interactions within an unoccupied pocket of the ALR2 enzyme. Four novel derivatives, OTI-(7-10), of the previously developed N-benzyl(oxotriazinoindole) inhibitor OTI-6 were synthetized and screened. All of them revealed 2 to 6 times higher ALR2 inhibitory efficacy when compared to their non-substituted lead compound OTI-6. Moreover, the most efficient ALR2 inhibitor OTI-7 (IC = 76 nM) possesses remarkably high inhibition selectivity (S ≥ 1300) in relation to structurally related aldehyde reductase (ALR1). Derivatives OTI-(8-10) bearing the substituents -CONH, -COOH and -CHOH, possess 2-3 times lower inhibitory efficacy compared to OTI-7, but better than the reference inhibitor OTI-6. Desolvation penalty is suggested as a possible factor responsible for the drop in ALR2 inhibitory efficacy observed for derivatives OTI-(8-10) in comparison to OTI-7.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2020.115885DOI Listing

Publication Analysis

Top Keywords

inhibitory efficacy
12
aldose reductase
8
inhibitor oti-6
8
alr2 inhibitory
8
efficacy compared
8
derivatives oti-8-10
8
alr2
6
novel
4
novel substituted
4
substituted n-benzyloxotriazinoindole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!