Conventional antibiotics used for the treatment of severe infections such as sepsis and septic shock confer immunomodulatory benefits. However, the growing problem of multidrug resistant infections has led to an increase in the administration of non-conventional last-resort antibiotics, including quinolones, aminoglycosides, and polypeptides, and the effects of these drugs on immunomodulatory gene expression in activated human polymorphonuclear leukocytes (PMNs) have not been reported. In this study, lipopolysaccharide-stimulated PMNs were incubated with piperacillin, rifampicin, fosfomycin (FOM), levofloxacin (LVFX), minocycline (MINO), colistin, tigecycline, or amikacin, and the mRNA expression levels of pattern recognition receptors (TLR2, TLR4, and CD14), inflammatory cytokines (TNFα and IL6), and chemokine receptors (IL8Rs and ITGAM) in these cells were quantitated using real-time qPCR. Many of the tested antibiotics altered the expression of the investigated cytokines. Notably, FOM, LVFX, and MINO significantly downregulated the expression of IL6, which is associated with pro- and anti-inflammatory defense mechanisms. Treatment of FOM and LVFX reduced IL-6 production as well as observed for IL6 gene expression. These findings indicated transcription and translation cooperation under the used experimental conditions. Therefore, our findings suggest that administration of these antibiotics suppresses the host anti-inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2020.11.012DOI Listing

Publication Analysis

Top Keywords

gene expression
12
immunomodulatory gene
8
human polymorphonuclear
8
polymorphonuclear leukocytes
8
fom lvfx
8
expression
6
antibiotics
5
expression analysis
4
analysis lps-stimulated
4
lps-stimulated human
4

Similar Publications

Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.

Results: Forty male Wistar rats divided into five groups of eight rats were used.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!