AI Article Synopsis

Article Abstract

Abscisic acid (ABA) signaling components play an important role in the drought stress response in plants. Arabidopsis thaliana ENHANCED RESPONSE TO ABA1 (ERA1) encodes the β-subunit of farnesyltransferase and regulates ABA signaling and the dehydration response. Therefore, ERA1 is an important candidate gene for enhancing drought tolerance in numerous crops. However, a rice (Oryza sativa) ERA1 homolog has not been characterized previously. Here, we show that rice osera1 mutant lines, harboring CRISPR/Cas9-induced frameshift mutations, exhibit similar leaf growth as control plants but increased primary root growth. The osera1 mutant lines also display increased sensitivity to ABA and an enhanced response to drought stress through stomatal regulation. These results illustrate that OsERA1 is a negative regulator of primary root growth under nonstressed conditions and also of responses to ABA and drought stress in rice. These findings improve our understanding of the role of ABA signaling in the drought stress response in rice and suggest a strategy to genetically improve rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714338PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243376PLOS

Publication Analysis

Top Keywords

drought stress
20
primary root
12
root growth
12
aba signaling
12
abscisic acid
8
increased primary
8
growth nonstressed
8
nonstressed conditions
8
stress response
8
enhanced response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!