In the process of software development, regression testing is one of the major activities that is done after making modifications in the current system or whenever a software system evolves. But, the test suite size increases with the addition of new test cases and it becomes in-efficient because of the occurrence of redundant, broken, and obsolete test cases. For that reason, it results in additional time and budget to run all these test cases. Many researchers have proposed computational intelligence and conventional approaches for dealing with this problem and they have achieved an optimized test suite by selecting, minimizing or reducing, and prioritizing test cases. Currently, most of these optimization approaches are single objective and static in nature. But, it is mandatory to use multi-objective dynamic approaches for optimization due to the advancements in information technology and associated market challenges. Therefore, we have proposed three variants of self-tunable Adaptive Neuro-fuzzy Inference System i.e. TLBO-ANFIS, FA-ANFIS, and HS-ANFIS, for multi-objective regression test suites optimization. Two benchmark test suites are used for evaluating the proposed ANFIS variants. The performance of proposed ANFIS variants is measured using Standard Deviation and Root Mean Square Error. A comparison of experimental results is also done with six existing methods i.e. GA-ANFIS, PSO-ANFIS, MOGA, NSGA-II, MOPSO, and TOPSIS and it is concluded that the proposed method effectively reduces the size of regression test suite without a reduction in the fault detection rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714168 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242708 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!