Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell-nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, . The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c17017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!