Due to the pressing need to generate specific drugs or vaccines for COVID-19 and management of its outbreak, detailed knowledge regarding the SARS-CoV-2 entry into host cells and timely, cheap, and easy-to-use detection methods are of critical importance for containing the SARS-CoV-2 epidemic. Through electrophysiology and fluorescence spectroscopy experiments, we show that even in the absence of the angiotensin-converting enzyme 2 receptor, the S1 subunit from SARS-CoV-2 spike protein binding to neutral phospholipid membranes leads to their mechanical destabilization and permeabilization. A similar cytotoxic effect of the protein was seen in human lung epithelial cells. A monoclonal antibody generated toward the S1 subunit alleviates to a considerable extent the destabilizing potential of the protein in such model membranes. Finally, we demonstrate the proof-of-concept capability of an α-hemolysin (α-HL) protein nanopore to detect in aqueous buffer and real time the region-binding domain of the S1 subunit from SARS-CoV-2 spike protein by monitoring its immunological interaction with a target antibody. Our results may offer new perspectives in understanding the pathogenesis of the SARS-CoV-2 infection, its treatment, and real-time detection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c17044DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 spike
12
spike protein
12
subunit sars-cov-2
8
sars-cov-2
6
protein
6
non-receptor-mediated lipid
4
lipid membrane
4
membrane permeabilization
4
permeabilization sars-cov-2
4
subunit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!