This article presents a new method for modelling collective movement in continuous time with behavioural switching, motivated by simultaneous tracking of wild or semi-domesticated animals. Each individual in the group is at times attracted to a unobserved leading point. However, the behavioural state of each individual can switch between 'following' and 'independent'. The 'following' movement is modelled through a linear stochastic differential equation, while the 'independent' movement is modelled as Brownian motion. The movement of the leading point is modelled either as an Ornstein-Uhlenbeck (OU) process or as Brownian motion (BM), which makes the whole system a higher-dimensional Ornstein-Uhlenbeck process, possibly an intrinsic non-stationary version. An inhomogeneous Kalman filter Markov chain Monte Carlo algorithm is developed to estimate the diffusion and switching parameters and the behaviour states of each individual at a given time point. The method successfully recovers the true behavioural states in simulated data sets , and is also applied to model a group of simultaneously tracked reindeer (Rangifer tarandus).

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.13412DOI Listing

Publication Analysis

Top Keywords

continuous time
8
leading point
8
movement modelled
8
brownian motion
8
ornstein-uhlenbeck process
8
movement
5
modelling group
4
group movement
4
movement behaviour
4
behaviour switching
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!