Investigation of Drug Efficacy by Screening Bioactive Chemical Effects on Plant Cell Subcellular Architecture.

Methods Mol Biol

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.

Published: March 2021

New biologically active compounds are regularly discovered through screening procedures using microorganisms. This very cheap procedure is followed by drug discovery that is usually seen as a highly focused approach, testing new compounds on animals or cell lines. In vivo assays of candidate drugs in mammals are expensive and sometimes not affordable at the preliminary stages of drug development. Early screening approaches in transgenic plants would allow chemotherapeutic drug candidates further selection before their characterization in expensive biological models. The proposed screening approach is based on cell subcellular architecture observations in transgenic plants within a short time of treatment, which is better than observing the effects of compounds on growth.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0954-5_5DOI Listing

Publication Analysis

Top Keywords

cell subcellular
8
subcellular architecture
8
transgenic plants
8
investigation drug
4
drug efficacy
4
screening
4
efficacy screening
4
screening bioactive
4
bioactive chemical
4
chemical effects
4

Similar Publications

Steroidal saponins in Paris polyphylla featuring complicated sugar chains exhibit notable biological activities, but the sugar chain biosynthesis is still not fully understood. Here, we identified a 4'-O-rhamnosyltransferase (UGT73DY2) from P. polyphylla, which catalyzes the 4'-O-rhamnosylation of polyphyllins V and VI, producing dioscin and pennogenin 3-O-β-chacotrioside, respectively.

View Article and Find Full Text PDF

Structure and Function Analysis of Microcystin Transport Protein MlrD.

Biochimie

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:

Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

The wide range of applications and the enormous production of nanomaterials have raised the possibility that humans may simultaneously contact with various nanomaterials through multiple routes. Although numerous toxicity studies have been conducted on the toxicity of nanomaterials, knowledge of the combined toxicity of nanomaterials remains limited. Herein, the combined toxic effects of the two types of the most widely used nanomaterials, silver and silica, were studied on HeLa cells.

View Article and Find Full Text PDF

Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!