Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator (TIGAR) can protect neurons after cerebral ischemia/reperfusion. However, the role of TIGAR in neonatal hypoxic-ischemic brain damage (HIBD) remains unknown. In the present study, 7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia. At 6 days before induction of HIBD, a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D (LV-sh_TIGAR or LV-sh_GSDMD) was injected into the left lateral ventricle and striatum. Highly aggressively proliferating immortalized (HAPI) microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation. Three days before in vitro HIBD induction, HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD. Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Lentivirus-mediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro. Application of exogenous nicotinamide adenine dinucleotide phosphate (NADPH) increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Additionally, exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro. These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD. The study was approved by the Animal Ethics Committee of Soochow University of China (approval No. 2017LW003) in 2017.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224121PMC
http://dx.doi.org/10.4103/1673-5374.300453DOI Listing

Publication Analysis

Top Keywords

hapi microglial
16
brain damage
12
microglial cells
12
tp53-induced glycolysis
8
glycolysis apoptosis
8
apoptosis regulator
8
microglial pyroptosis
8
hibd
8
hibd established
8
lv-sh_tigar lv-sh_gsdmd
8

Similar Publications

Energy restriction inhibits β-catenin ubiquitination to improve ischemic stroke injury via USP18/SKP2 axis.

Metab Brain Dis

December 2024

Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.

Ischemic stroke (IS) remains a global health issue because of its great disability and mortality. Energy restriction (ER) has been justified to perform an inhibitory role in cerebral injury caused by IS. This research was purposed to inquire the potential molecular mechanism of ER in IS.

View Article and Find Full Text PDF

Background: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression.

View Article and Find Full Text PDF

Cerebral ischemic stroke (CIS) is the main cause of disability. METTL3 is implicated in CIS, and we explored its specific mechanism. Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation/reperfusion (OGD/R) HAPI cell model were established and treated with LV-METTL3 or DAA, oe-METTL3, miR-335-3p mimics, or DAA, to assess their effects on MCAO rat neurological and motor function, cerebral infarction area, brain water content, microglial activation, blood-brain barrier (BBB) permeability, and NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Indole-3-carbinol(I3C) is a tumor chemopreventive substance that can be extracted from cruciferous vegetables. Indole-3-carbinol (I3C) has been shown to have antioxidant and anti-inflammatory effects. In this study, we investigated the cerebral protective effects of I3C in an in vivo rats model of middle cerebral artery occlusion (MCAO).

View Article and Find Full Text PDF

Lycopene (LYC) exerts a strong neuroprotective and antipyroptotic effects. This study explored the effects and mechanisms of LYC on chronic stress-induced hippocampal microglial damage and depression-like behaviors. The caspase-1 inhibitor VX-765 attenuated chronic restrain stress (CRS)-induced hippocampal microglial pyroptosis and depression-like behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!