In order to reduce exposure to toxic chemicals, the European REACH regulation (1907/2006) recommends substituting toxic molecules with compounds that are less harmful to human health and the environment. Toluene is one of the most frequently used solvents in industries despite its toxicity. The objective of this study is to better understand and compare the toxicity of toluene and its homologues in a bronchial cell model. Thus, human bronchial BEAS-2B cells were exposed to steams of toluene, m-xylene, mesitylene (1,3,5-trimethylbenzene), and benzene (20 and 100 ppm). Exposure was carried out using an air-liquid interface (ALI) system (Vitrocell) during 1 h/day for 1, 3, or 5 days. Cytotoxicity, xenobiotic metabolism enzyme gene expression, and inflammatory response were evaluated following cell exposures. BEAS-2B cell exposure to toluene and its homologues revealed the involvement of major (CYP2E1) and minor metabolic pathways (CYP1A1). A late induction of genes (EPHX1, DHDH, ALDH2, and ALDH3B1) was measured from Day 3 and can be linked to the formation of metabolites. An increase in the secretion level of inflammatory markers (TNF-α, IL-6, IL-8, MCP-1, and GM-CSF) was also observed. In parallel, regulation between inflammatory mediators and the expression of transmembrane glycoprotein mucin MUC1 was also studied. This in vitro approach with ALI system points out the relevance of conducting repeated exposures to detect potential late effects. The difference recorded after cell exposure to toluene and its homologues highlights the importance of substitution principle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.4113 | DOI Listing |
ChemistryOpen
December 2024
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France.
In this article, we present several organic synthetic way to synthesize a family of five polyaromatic molecules based on a cyclophane core. Our strategies revolves around palado-catalyzed substitution on a [2.2]paracyclophane (pCp) building block.
View Article and Find Full Text PDFZhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
November 2022
Laboratory of Physical and Chemical, Shenzhen Luohu District Center for Disease Control and Prevention, Shenzhen 518020, China.
To establish a purge and trap-gas chromatography-mass spectrometry method based on soil analysis model for the determination of six benzene homologues (benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene) in human blood. From September 2020 to May 2021, diatomite was used as a dispersant to add 2.0 ml blood sample and fully mixed.
View Article and Find Full Text PDFMolecules
December 2022
Laboratory for Chemistry of Nitrogen Compounds, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia.
Here, we investigated the synthetic processes for the methyl derivatives of sym-triaminobenzene and phloroglucinol, the essential chemical reactants coming into use in the production of dyes and pigments, and medicinal drugs for different purposes. The most eco-benign process for the synthesis of triamino derivatives involves the catalytic hydrogenation of corresponding nitroarenes. The present study investigated the hydrogenation of 2,4,6-trinitrotoluene, 2,4,6-trinitroxylene, and 2,4,6-trinitromesitylene over a Pd catalyst.
View Article and Find Full Text PDFACS Macro Lett
September 2022
Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France.
Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of -LA employing chiral organocatalysts has been under-leveraged.
View Article and Find Full Text PDFInorg Chem
February 2022
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!