Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electric contact currents (CC) can cause muscle contractions, burns, or ventricular fibrillation which may result in life-threatening situations. In vivo studies with CC are rare due to potentially hazardous effects for participants. Cadaver studies are limited to the range of tissue's electrical properties and the utilized probes' size, relative position, and sensitivity. Thus, the general safety standards for protection against CC depend on a limited scientific basis. The aim of this study was therefore to develop an extendable and adaptable validated numerical body model for computational CC dosimetry for frequencies between DC and 1 MHz. Applying the developed model for calculations of the IEC heart current factors (HCF) revealed that in the case of transversal CCs, HCFs are frequency dependent, while for longitudinal CCs, the HCFs seem to be unaffected by frequency. HCFs for current paths from chest or back to hand appear to be underestimated by the International Electrotechnical Commission (IEC 60479-1). Unlike the HCFs provided in IEC 60479-1 for longitudinal current paths, our work predicts the HCFs equal 1.0, possibly due to a previously unappreciated current flow through the blood vessels. However, our results must be investigated by further research in order to make a definitive statement. Contact currents of frequencies from DC up to 100 kHz were conducted through the numerical body model Duke by seven contact electrodes on longitudinal and transversal paths. The resulting induced electric field and current enable the evaluation of the body impedance and the heart current factors for each frequency and current path.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811986 | PMC |
http://dx.doi.org/10.1007/s11517-020-02284-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!