Circular RNAs: Promising Biomarkers for Age-related Diseases.

Aging Dis

1Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China.

Published: December 2020

Aging is a complex biological process closely linked with the occurrence and development of age-related diseases. Despite recent advances in lifestyle management and drug therapy, the late diagnosis of these diseases causes severe complications, usually resulting in death and consequently impacting social economies. Therefore, the identification of reliable biomarkers and the creation of effective treatment alternatives for age-related diseases are needed. Circular RNAs (circRNAs) are a novel class of RNA molecules that form covalently closed loops capable of regulating gene expression at multiple levels. Several studies have reported the emerging functional roles of circRNAs in various conditions, providing new perspectives regarding cellular physiology and disease pathology. Notably, accumulating evidence demonstrates the involvement of circRNAs in the regulation of age-related pathologies, including cardio-cerebrovascular disease, neurodegenerative disease, cancer, diabetes, rheumatoid arthritis, and osteoporosis. Therefore, the association of circRNAs with these age-related pathologies highlights their potential as diagnostic biomarkers and therapeutic targets for better disease management. Here, we review the biogenesis and function of circRNAs, with a special focus on their regulatory roles in aging-related pathologies, as well as discuss their potential as biological biomarkers and therapeutic targets for these diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673852PMC
http://dx.doi.org/10.14336/AD.2020.0309DOI Listing

Publication Analysis

Top Keywords

age-related diseases
12
circular rnas
8
age-related pathologies
8
biomarkers therapeutic
8
therapeutic targets
8
age-related
5
diseases
5
circrnas
5
rnas promising
4
biomarkers
4

Similar Publications

Osteoporosis (OP) is a prevalent age-related bone metabolic disease. Aging and mitochondrial dysfunction are involved in the onset and progression of OP, but the specific mechanisms have not been elucidated. The aim of this study was to identify novel potential biomarkers associated with aging and mitochondria in OP.

View Article and Find Full Text PDF

Biomechanical perspectives on traumatic brain injury in the elderly: A comprehensive review.

Prog Biomed Eng (Bristol)

January 2025

Tehran University of Medical Sciences, Hassan-Abad Square, Imam-Khomeini Ave., Tehran, 11365-3876, Tehran, 1416753955, Iran (the Islamic Republic of).

Traumatic brain injuries (TBIs) pose a significant health concern among the elderly population, influenced by age-related physiological changes and the prevalence of neurodegenerative diseases. Understanding the biomechanical dimensions of TBIs in this demographic is vital for developing effective preventive strategies and optimizing clinical management. This comprehensive review explores the intricate biomechanics of TBIs in the elderly, integrating medical and aging studies, experimental biomechanics of head tissues, and numerical simulations.

View Article and Find Full Text PDF

Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus.

Nat Neurosci

January 2025

Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland.

The mammalian dentate gyrus (DG) is involved in certain forms of learning and memory, and DG dysfunction has been implicated in age-related diseases. Although neurogenic potential is maintained throughout life in the DG as neural stem cells (NSCs) continue to generate new neurons, neurogenesis decreases with advancing age, with implications for age-related cognitive decline and disease. In this study, we used single-cell RNA sequencing to characterize transcriptomic signatures of neurogenic cells and their surrounding DG niche, identifying molecular changes associated with neurogenic aging from the activation of quiescent NSCs to the maturation of fate-committed progeny.

View Article and Find Full Text PDF

Neurodegenerative pathologies such as age-related macular degeneration currently have no cure or effective treatment. In this type of disease, the presence of amyloid-β peptides, oxidative stress, and inflammation trigger dysregulation of retinal pigment epithelial cells and progression toward the death of these cells, resulting in a loss of vision. The production of amyloid-β peptides, oxidative stress, and inflammation can be triggered in response to viral infections.

View Article and Find Full Text PDF

Functional Diversity of Senescent Cells in Driving Aging Phenotypes and Facilitating Tissue Regeneration.

J Biochem

January 2025

Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.

As the global population continues to age, understanding the complex role of cellular senescence and its implications in healthy lifespans has gained increasing prominence. Cellular senescence is defined as the irreversible cessation of cell proliferation, accompanied by the secretion of a range of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP), in response to various cellular stresses. While the accumulation of senescent cells has been strongly implicated in the aging process and the pathogenesis of age-related diseases owing to their pro-inflammatory properties, recent research has also highlighted their essential roles in processes such as tumour suppression, tissue development, and repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!